Реферат: Матричные фотоприемники
Центр эпитаксиальной структуры либо свободен от дислокаций
несоответствия, либо содержит их незначительное количество. Измерение
удельного сопротивлениячетырехзон-довым методом показало, что концентрация
висмута по диаметру эпитаксиальных структур не изменялась. Поэтому можно
считать, что увеличение плотности дислокаций несоответствия связано с
радиальными градиентами в процессе роста структур, что обуславливает градации
интенсивности на электронной микрофотографии.
Рис. 1. Электронная микрофотография поверхности гетероструктуры
InSb – InSb 0.985 Bi 0.015 – .20000.
Измерения, проведенные на основе рентгенографических исследований,
показали, что суммарная толщина пары слоев InSb и InSbBi
d1 + d2 ≈ 120 нм.
Ширина запрещенной зоны в такой сверхрешетке при переходе от слоя к слою
модулируется по закону:
Eg(x) = (Eg1d1 + Eg2d2 )/(d1 + d2)
Рис. 2. Схема лавинного фотодиода на основе сверхрешетки InSb-InSbBi
При этом снимается проблема программированного изменения состава
твердого раствора на малых длинах (~ 0,1 мкм). Градиентный слой уменьшает
величину скачка в валентной зоне так, что ∆Е → 0 и длинновременная
составляющая релаксации фототока τp → 0. Быстродействие при этом может
сокращаться до значений ~ 1 нс. Структура такого лавинного фотодиода
представлена на рис. 2. Топологически такой прибор приводится к структуре
фотоприемника с растровыми электродами, изоляция между которыми выполнена
обратносмещенными p-n-переходами.
Таким образом, в технологии фотоприемных устройств инфракрасного
диапазона (спектры фотолюминесценции имеют максимум вблизи 8,7 мкм) могут
быть перспективны структуры типа «квантовой ямы».
3.5 Принципиальная схема
4.1Фоторезисторы