Реферат: Матричные фотоприемники
Фототок – ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.
Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм · В)
К0 = Iф / (ФU), (7)
где Iф – фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф – падающий световой поток, лм; U – напряжение, приложенное к фоторезистору, В.
Интегральная чувствительность – произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0 Umax .
Постоянная времени tф – время, в течение которого фототок изменяется на 63%, т. е. в e раз.
Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.
При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону
iф = Iф (1 – e – t / t ); iф = Iф e – t / t , (8)
где Iф – стационарное значение фототока при освещении.
По кривым спада фототока во времени можно определить время жизни t неравновесных носителей.
4.4 Изготовление фоторезисторов
В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIII BV . В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.
4.5 Применение фоторезисторов
В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике
5.1 Устройство и основные узлы фотоэлектронного умножителя
Фотоэлектронный умножитель (ФЭУ) . очень распространенный и во
многих случаях незаменимый детектор излучения. Он позволяет регистрировать и
предельно слабые и довольно интенсивные потоки. От единиц до 10101012
фотонов в секунду. Постоянная времени . порядка 10–810–10 с, т.е. допускает
весьма высокие частоты модуляции. Может быть размещен на воздухе и в
вакууме. На выходе дает легко измеримый сигнал. Все это с лихвой компенсирует
неудобства, связанные с необходимостью использования высоковольтных блоков питания (0.52.5 кВ) и довольно большими габаритами ФЭУ.
Устройство и основные узлы фотоэлектронного умножителя
Схематичное изображение
устройства ФЭУ.
Пояснения в тексте.