Реферат: Механические свойства конструкционных пластмасс
ПолимерТхр , 0 С Тс 0 С
Полистирол90100
Полиметилметакрилат10110
Поливинилхлорид-9081
Полипропиленот -10 до -20-30
ПВС -86
Прочность полимеров повышается с понижением температуры. Наибольшая термостойкость, т.е. способность сохранять прочность при повышенных температурах, характерна для стеклопластиков и полимерных материалов с минеральными наполнителями.
1.2 Зависимость прочности полимеров от скорости нагружения
Прочность полимерных материалов с ростом скорости нагружения растет. Журков вывел уравнение:
σв = ln(A-α)/α+ ½ lnv,
где σв – разрушающее напряжение (прочность);
А и α – постоянные эмпирические коэффициенты;
v – скорость нагружения.
Это уравнение справедливо только для пластмасс. В отличие от них у эластомеров при больших скоростях деформации предел прочности снижается.
1.3 Усталостные свойства пластмасс
При действии периодической нагрузки малой величины, не приводящей к разрушению материала, основным фактором является величина внутреннего трения, обусловливающего рассеяние энергии (механический гистерезис). Сдвиг по фазе между напряжением и деформацией учитывается динамическим модулем. Он зависит как от структуры пластмассы, так и от скорости нагружения. Так, для полистирола при скорости нагружения 0,002 м/c динамический модуль равен 4 МПа, а при 0,06 м/с – 3,4 МПа. При этих же скоростях нагружения динамический модуль для ПММА равняется соответственно: 4,8 и 3 МПа, для ПЭНП – 0,3 и 0,29 МПа.
На усталостные свойства пластмасс влияют температура, влажность, агрессивность среды, вид периодически повторяющегося переменного напряженного состояния, частота колебаний, форма и размеры изделия.
Предельное значение усталостных напряжений, ниже которого разрушение не происходит, называется пределом выносливости (σ-1 ). Он существует только для чистых полимеров. Наполненные полимерные материалы не имеют истинного предела выносливости (или он очень низок). Поэтому для них за предел выносливости принимают разрушающее напряжение, соответствующее 107 – 108 циклов.
Стойкость к усталости характеризуется коэффициентом усталости:
К = σ-1 ·100 / σв , %,
где σв – предел прочности при статической нагрузке.
Коэффициент усталости равен 0,717 для ПВХ, 0,715 для полистирола, 0,142 для полиэтилена низкой плотности.
При переменных и ударных нагрузках долговечность изделий зависит от демпфирующей способности применяемых материалов. Пластмассы имеют более высокую демпфирующую способность, чем металлы.
Коэффициент относительной демпфирующей способности может быть рассчитан по формуле:
ηд = 2·Θ·Е·100 / Р2 ,
где Θ – работа демпфирования;
Е – модуль упругости;
Р – нагрузка.
Коэффициент демпфирующей способности равен: для эбонита – 4; для стали – 0,2; для текстолита – 11; для фибры – 21,5. Наполнители повышают демпфирующую способность.
По Журкову предел прочности определяется не только механическим напряжением, но и тепловым движением. Приложенная нагрузка снижает внутреннюю энергию химических связей и способствует разрушению материала под действием теплового движения.
Время сопротивления материала нагружению (или долговечность):