Реферат: Механические свойства твердых тел в практике
Рис.13
В зависимости от ее формы различают брусья прямые (см. рис. 11, а) и кривые (см. рис. 11,6). В строительных конструкциях более распространены прямые брусья. Примером кривого бруса может служить грузоподъемный крюк (рис. 12, а).
Прямой брус постоянного сечения называется призматическим (см. рис. 11, а). Встречаются также брусья с непрерывно меняющимся сечением (например, промышленные трубы, рис. 12,6) и ступенчатые (например, мостовые опоры, рис. 12, в). В зависимости от конструктивного назначения среди брусьев различают стержни, балки (см. рис. 8; 9; 10) и колонны.
Оболочка — тело, ограниченное двумя криволинейными поверхностями, у которого длина и ширина b велики по сравнению с толщиной t (рис. 13, а). Если при тех же соотношениях размеров тело ограничено параллельными плоскостями (рис. 13,6), то оно называется пластиной. К оболочкам относятся стенки сосудов для хранения жидкостей, газов и сыпучих материалов (стенки резервуаров, газгольдеров, бункеров и т.п.), листовые конструкции доменных цехов (кожух доменной печи, воздухонагревателей, пылеуловителя), купола и своды зданий. К пластинам могут быть отнесены плоские днища сосудов, настил рабочих площадок цехов, обшивка каркасных кровельных и стеновых панелей. Толстые пластины принято называть плитами.
Тела, у которых все три размера одного порядка, называются массивами. К ним относятся фундаменты (рис. 13, б), подпорные стены и т. п.
Определение усилий и деформаций оболочек, пластин и массивов в большинстве случаев неосуществимо методами сопротивления материалов. Подобные задачи могут быть решены только с позиций теории упругости, основные предпосылки которой отличаются большей широтой и не ограничиваются такой формой тела, как брус.
1.4.Внешнее воздействие на тело
Классификация нагрузок.
Сооружения, конструкции и их элементы испытывают в процессе возведения и эксплуатации внешние воздействия. К ним относятся силовые воздействия от нагрузок, а также воздействия от изменения температуры, смещения опор, усадки и других подобных явлений, вызывающих реактивные силы.
Нагрузки классифицируют по разным признакам. По способу приложения они могут быть объемными или поверхностными. Объемные силы непрерывно распределены по всему объему, занимаемому элементом. К их числу относятся, например, сила тяжести и силы инерции. Нагрузка, приходящаяся на единицу объема, называется интенсивностью объемной нагрузки. Она выражается в единицах силы, отнесенных к единице объема (Н/м3 , кН/м3 и т.д.).
Если внешние силы являются результатом непосредственного взаимодействия элемента с другими телами (твердыми, жидкими или газообразными), то они прикладываются только по площадкам контакта и называются поверхностными. Сюда относятся: давление жидкости или газа на стенки сосуда, снеговая нагрузка на кровлю здания, ветровая нагрузка и др. Давление должно выражаться в единицах силы, отнесенных к единице площади (Н/м2 , кН/м2 и т.д.). Однако в СИ вводится специальная производная единица — паскаль: 1 Па = = 1 Н/м2 , поэтому интенсивность поверхностной нагрузки р логично также выражать в паскалях и кратных ему единицах (кПа, МПа), но это не всегда удобно.
Поскольку соприкасание реальных, т.е. деформируемых тел, всегда происходит не в точке, а по некоторой, пусть даже очень малой, площадке, все поверхностные нагрузки являются распределенными. Однако в тех случаях, когда площадка контакта пренебрежимо мала по сравнению с размерами нагружаемого элемента, вводят понятие сосредоточенной силы F' как равнодействующей давления по указанной площадке (например, сила, обусловленная давлением обода колеса на рельс, рис. 14)
В практических расчетах часто встречается нагрузка, распределенная по длине элемента конструкции. Так, например, на каждую промежуточную балку перекрытия здания (рис. 15, а) приходится полоса поверхностной нагрузки р шириной а (рис. 15,6). Интенсивность нагрузки, распределенной по длине балки (рис. 15,0),
q = pa (9)
выражается в единицах силы, отнесенных к единице длины (Н/м, кН/м и т.д.).
В рассматриваемом случае интенсивность постоянна по длине, поэтому нагрузка называется равномерно распределенной и графически изображается в виде прямоугольника. Однако интенсивность может быть переменной и тогда нагрузка распределяется по более сложному закону: треугольному (например, при гидростатическом давлении — давлении покоящейся жидкости), трапецеидальному (нагрузка от собственного веса двускатных и односкатных балок), синусоидальному (нагрузка от ветрового напора на элементы типа оболочек) и т. п.
В процессе расчетной схематизации реальные нагрузки не всегда могут быть сведены лишь к сосредоточенным и распределенным силовым воздействиям. Возможны и моментные воздействия — в виде сосредоточенных моментов и моментов, распределенных по длине элемента или его поверхности. На рис. 16 показано, как появляются сосредоточенные моменты т1 , т2 , и т3 в результате замены бруса его продольной осью и приведения к ней поверхностных сил F1 , F2 и F3 , приложенных в плоскости чертежа. Сосредоточенные моменты выражаются в единицах силы, умноженных на единицу длины (Нм, кНм и т.д.).
По характеру изменения в процессе приложения нагрузки делятся на статические, динамические и повторно-переменные. К статическим относятся нагрузки, не меняющиеся со временем (например, нагрузка от собственного веса) или меняющиеся настолько медленно, что вызываемые ими ускорения и силы инерции элементов конструкции пренебрежимо малы (например, снеговая нагрузка).
Динамические нагрузки в отличие от статических меняют свое значение, положение или направление в короткие промежутки времени (движущиеся нагрузки, ударные, сейсмические и др.), вызывая большие ускорения и силы инерции, что приводит к колебаниям конструкций и сооружений.
Повторно-переменными называются нагрузки, многократно (до нескольких миллионов раз) изменяющие со временем значение или значение и знак. Разрушение материала под действием таких нагрузок называется усталостным (например, разрушение куска проволоки от многократного перегибания, рис. 17), а способность противостоять ему— сопротивлением усталости.
По продолжительности действия нагрузки делят на постоянные и временные. К постоянным относятся нагрузки, действующие в течение всего времени существования конструкции или сооружения (например, вес несущих и ограждающих конструкций, вес и давление грунта).
Временные нагрузки действуют на протяжении отдельных периодов эксплуатации или возведения объекта. К ним относятся нагрузки от веса людей, материалов и оборудования; давление жидкостей, газов и сыпучих материалов в сосудах и трубопроводах; атмосферные нагрузки (снеговая, ветровая, гололедная); температурные, монтажные, сейсмические, взрывные, аварийные и прочие воздействия ограниченной продолжительности.
1.5.Внутренние силы в поперечном сечении бруса
В недеформированном состоянии, т.е. при отсутствии внешних воздействий, связанность тела обусловлена силами взаимодействия атомов. Эти силы стремятся сохранить тело как единое целое, препятствуя любой попытке изменить взаимное расположение атомов и таким образом деформировать тело. Внешние воздействия, наоборот, стремятся вызвать деформирование тела путём изменения межатомных расстояний, взаимного расположения атомов и сил их взаимодействия. Однако если бы механика деформируемого тела ставила перед собой задачу изучать силы, действующие на каждый атом в отдельности, пользоваться её аппаратом было бы чрезвычайно трудно. Поэтому сопротивление материалов рассматривает поведение макрообъёмов материала, т.е. объёмов, состоящих из большого количества атомов и имеющих такие размеры, которые позволяют считать материал сплошным и однородным. Сплошное однородное тело не имеет в своём составе взаимодействующих частиц, и его целостность обеспечивают внутренние связи. Из теоретической механики известна так называемая аксиома связей, которая гласит: равновесие тела сохранится, если действие связей, закрепляющих тело в пространстве (рис.18,а), заменить их реакциями (рис.18,б).
| |||
| |||
| |||
|
Применяя эту аксиому к деформируемому телу, можно мысленно рассечь его произвольной плоскостью (рис.19,а), отделить одну часть от другой и взамен нарушенных связей приложить к каждой части силы, равные усилиям связей (рис.19,б). Такие силы называются внутренними. Они непрерывно распределяются по образовавшемуся сечению вследствие допущения о сплошности материала. Их находят посредством специального приёма – метода сечений, сущность которого заключается в следующем.
Пусть на тело, имеющее форму бруса, действует система взаимно уравновешенных внешних сил F1 ,F2 ,…,Fn (рис.20, а). Для определения
внутренних сил производят последовательно четыре операции: 1) рассекают брус в интересующем месте воображаемой плоскостью; 2) отбрасывают мысленно одну из образовавшихся частей (обычно ту, к которой приложено больше сил), в результате чего нарушается равновесие оставшейся части;