Реферат: Механічні й електромагнітні коливання
П = (14)
Рис. 3
Додавши (13) і (14), одержимо формулу для повної енергії гармонічного коливання:
(15)
З формул (12) і (14) видно, що К і Π змінюються в часі з частотою, яка у два рази перевищує частоту гармонічного коливання. На рис. 3 показані графіки залежності х, К і Π від часу.
Оскільки середні значення то з формул (11), (13) і (15) випливає, що
3. Гармонічний осцилятор. Пружинний, фізичний і математичний маятники
Гармонічним осцилятором називається система, яка описується диференціальним рівнянням виду (6):
(16)
Коливання гармонічного осцилятора є важливим прикладом періодичного руху і служать точною або наближеною моделлю в багатьох задачах класичної і квантової фізики. Прикладами гармонічного осцилятора є пружинний, фізичний і математичний маятники, коливальний контур (для струмів і напруг настільки малих, щоб елементи контуру можна було вважати лінійними).
Пружинний маятник. Пружинний маятник – невеличке тіло масою т, яке підвішене до абсолютно пружної пружині і здійснює гармонічні коливання під дією пружної сили F = - kx , де k - коефіцієнт пружності, у випадку пружини, названий жорсткістю (рис. 4).
Рис.4
Диференціальне рівняння коливання маятника буде мати вигляд
або
(17)
З виразів (16) і (1) випливає, що пружинний маятник виконує гармонічні коливання за законом з циклічною частотою
і періодом
Формула (17) справедлива для пружних коливань у межах, для яких виконується закон Гука, тобто коли маса пружини мала в порівнянні з масою тіла.
В цьому випадку потенціальна енергія пружинного маятника, згідно (13) дорівнює
(18)
Фізичний маятник. Фізичний маятник – тверде тіло, яке під дією сили тяжіння виконує гармонічні коливання відносно нерухомої горизонтальної осі або підвісу, що не збігається з центром мас С тіла (рис. 5).
Якщо маятник відхилений від положення рівноваги на деякий кут , то відповідно до основного рівняння динаміки обертального руху твердого тіла момент Μ сили Fτ , яка повертає маятник до положення рівноваги буде дорівнювати
(19)