Реферат: Механика жидкостей и газов в законах и уравнениях
1. МЕХАНИКА ЖИДКОСТЕЙ
Совокупность векторов v ( t ), заданных для всех точек пространства, называется полем вектора скорости. Это поле можно наглядно изобразить с помощью линий тока (рис. 39.1). Линию тока
|
|
можно провести через любую точку пространства. Если построить все мыслимые линии тока, они просто сольются друг с другом. Поэтому для наглядного представления течения жидкости строят лишь часть линий, выбирая их так, чтобы густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных точках пространства. Например, в точке А на рис.39.1 густота линий, а следовательно и модуль v , чем в точке В. Поскольку разные частицы жидкости могут проходить через данную точку пространства с разными скоростями (т. е. v = v ( t )), картина линий тока, вообще говоря, все время изменяется. Если скорость в каждой точке пространства остается постоянной ( V = const ), то течение жидкости Называется стационарным (установившимся). При стационарном течении любая частица жидкости проходит через данную точку пространства с одной и той же скоростью v . Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц. Если через все точки небольшого замкнутого контуpa провести линии тока, образуется поверхность, которую называют трубкой тока. Вектор v касателен к поверхности трубки тока в каждой ее точке. Следовательно, частицы жидкости при своем движении не пересекают стенок трубки тока.
Возьмем трубку тока, достаточно тонкую для того, чтобы во всех точках ее поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При стационарном течении трубка тока подобна стенкам жесткой трубы. Поэтому через сечение 5 пройдет за время Δt объем жидкости, равный SvΔt , а в единицу времени объем
(39.1)
Жидкость, плотность которой всюду одинакова и изменяться не может, называется несжимаемой. На рис. 39.3 изображены два сечения очень тонкой трубки тока — S1 и S2. Если жидкость несжимаема , то кол – во ее между этими сечениями остается неизменным. Отсюда следует, что
| |
|
объемы жидкости, протекающие в единицу времени через сечения S1 и S2, должны быть одинаковыми:
(39.2)
(напомним, что через боковую поверхность трубки тока частицы жидкости не проникают).
Равенство (39.2) справедливо для любой пары произвольно взятых сечений. Следовательно, для несжимаемой жидкости при стационарном течении произведение Sv в любом сечении данной трубки тока имеет одинаковое значение:
(39.3)
Это утверждение носит название теоремы о неразрывности струи.
Мы получили формулу (39.3) для несжимаемой жидкости. Однако она применима к реальным жидкостям и даже к газам в том случае, когда их сжимаемостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости звука в этой среде, их можно с достаточной точностью считать несжимаемыми.
Из соотношения (39.3) вытекает, что при изменяющемся сечении трубки тока частицы несжимаемой жидкости движутся с ускорением (рис. 39.4). Если трубка тока горизонтальна, это ускорение может быть обусловлено только непостоянством давления вдоль трубки — в местах, где скорость больше, давление должно быть меньше, и наоборот. Аналитическую связь между скоростью течения и давлением мы установим в следующем параграфе.
2. Уравнение Бернулли
В реальных жидкостях при перемещении слоев жидкости друг относительно друга возникают силы внутреннего трения, тормозящие относительное смещение слоев. Воображаемая жидкость, у которой внутреннее трение полностью отсутствует, называется идеальной. Течение идеальной жидкости не сопровождается диссипацией энергии (см. предпоследний абзац § 24).
Рассмотрим стационарное течение несжимаемой идеальной жидкости. Выделим объем жидкости, ограниченный стенками узкой трубки тока и перпендикулярными к линиям тока сечениями S 1 и S 2 (рис. 40.1), За время А/ этот объем сместится вдоль трубки тока, причем граница объема S 1 получит перемещение Δ l 2 , а граница S 2 — перемещение Δ l 2 . Работа, совершаемая при этом силами давления, раина приращению полной энергии ( Ek + Ep ), заключенной в рассматриваемом объеме жидкости.
Силы давления на стенки трубки тока перпендикулярны в каждой точке к направлению перемещения жидкости, вследствие чего работы не совершают. Отлична от нуля лишь работа сил давления, приложенных к сечениям S1 и S2. Эта работа равна (см. рис. 40.1).
Полная энергия рассматриваемого объема жидкости слагается из кинетической энергии и потенциалальной энергии в поле сил земного тяготения. Вследствие стационарности течения полная энергия той части жидкости, которая ограничена сечениями 1’ и 2 (внутренняя незаштрихованная часть трубки тока на рис. 40.1), за время Δ t не изменяется. Поэтому приращение полной энергии равно разности значений полной энергии заштрихованных объемов ΔV 2 и Δ V 1 , масса которых Δm = рΔ V (р — плотность жидкости).
Возьмем сечение S трубки тока и перемещения Δ l настолько малыми, чтобы всем точкам каждого из заштрихованных объёмов можно было приписать одно и то же значение скорости v , давления p , и высоты h. Тогда дли приращения полной энергии получается выражение
Приравняв выражения (40.1) и (40.2), сократив на AV и перенеся члены с одинаковыми индексами в' одну часть равенства, придем к уравнению
--> ЧИТАТЬ ПОЛНОСТЬЮ <--