Реферат: Механика жидкостей и газов в законах и уравнениях
Разделив переменные, получим уравнение
интегрирование которого дает, что
Постоянную интегрирования С нужно выбрать так, чтобы на стенке трубы (т. е. при г = R) скорость об* ращалась в нуль. Это условие выполняется при
Подстановка этого значения в (42.4) приводит к формуле
Скорость на оси трубы равна
С учетом этого формулу (42.5) можно написать в виде
Отсюда следует, что при ламинарном течения скорость изменяется с расстоянием от оси трубы но параболическому закону (рис. 42.4а).
С помощью формулы (42.7) можно вычисти, поток жидкости Q, т. е. объем жидкости, протекающей через поперечное сечение трубы и единицу времени. Разобьем сечение трубы на кольца ширины dr (рис. 42.5). Через кольцо радиуса r пройдёт в единицу времени объем жидкости dQ , равный произведению площади кольца 2П rdr на скорость v(t) на расстоянии от оси трубы:
(мы воспользовались формулой (42.7)). Проинтегрировав это выражение по г в пределах ОТ пули до R , получим поток Q :
(S —площадь сечения трубы). Поток можно представить как произведение среднего по сечению значения скорости <и> на площадь 5. Из формулы (42.8) следует, что при ламинарном течении среднее значение скорости равно половине значения скорости на оси трубы.
Подставив в (42.8) выражение (42.6) дли с>о, получим формулу
которая называется ф о р м у л о й П у а з е й л я . Из нее следует, что поток очень сильно зависит от радиуса трубы.
Естественно, что Q пропорционален отношению { P 1 — Р2 ) / l т. е. перепаду давления на единице длины трубы, а также обратно пропорционален вязкости жидкости n.
Формула Пуазейля используется для определения вязкости жидкостей и газов. Пропуская жидкость или газ через трубку известного радиуса, измеряют перепад давления и поток Q . Затем на основании полученных данных вычисляют n.
Мы все время подчеркивали, что предполагаем течение медленным для того, чтобы оно имело ламинарный характер. Напомним, что ламинарное течение является стационарным. Это означает, что скорость частиц жидкости, проходящих через данную точку пространства, все время одна и та же. Если увеличивать скорость течения, то при достижении определенного значения скорости характер течения резко меняется. Течение становится нестационарным — скорость частиц в каждой точке пространства все время беспорядочно изменяется. Такое течение называется турбулентным. При турбулентном течении происходит интенсивное перемешивание жидкости. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределится по всему сечению потока. Это можно наблюдать в упоминавшемся выше опыте, если увеличить поток воды в стеклянной трубке.
Поскольку при турбулентном течении скорость в каждой точке все время меняется, можно говорить только о среднем по времени значении скорости, которая при неизменных условиях течения оказывается постоянной в каждой точке пространства. Профиль средних скоростей для одного из сечений трубы при турбулентном течении показан на рис. 42.56. Сравнение с рис. 42.5 а показывает, что вблизи стенки трубы скорость изменяется гораздо сильнее, чем при ламинарном течении; в остальной части сечения скорость изменяется меньше.
Рейнольдс установил, что характер течения определяется значением безразмерной величины
где р — плотность жидкости (или газа), v — средняя по сечению трубы скорость потока, n - вязкость жидкости, l — характерный для поперечного сечения потока размер, например сторона квадрата при квадратном сечении, радиус или диаметр при круглом сечении. Величина Re называется числом Рейнольдса.
При малых значениях Re течение носит ламинарный характер. Начиная с некоторого значения Re, называемого критическим, течение приобретает турбулентный характер. Если в качестве характерного размера трубы взять ее радиус (в этом случае Re = pvr / n ), то критическое значение числа Рейнольдса оказывается равным примерно 1000 (если в качестве / взять диаметр трубы, то критическое значение Re будет равно 2000).