Реферат: Металлургия цветных металлов

Особо по сравнению с перечисленными группами примесей-ведут себя свинец и олово, которые по электрохимическим свой­ствам относятся к примесям I группы, но по своему поведению в процессе электролиза могут быть отнесены к приме­сям III и IV групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS04 и метаоловянную кислоту H2SnO3. Электроотрицательные примеси на катоде в условиях электро­лиза меди практически не осаждаются и постепенно накаплива­ются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно рас­строиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений . раство­ра или основных солей, особенно при их значительной концентра­ции в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зре­ния возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих суль­фатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подверга­ются гидролизу, образуя основные соли (Sb и Bi) или мышьяко­вистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков («плавучий» шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек «плавучего» шлама. Таким образом, примеси II группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей II группы в электролите составляют, г/л:

9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (III группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряже­ний должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5% от его содер­жания в анодах, а серебра — более 98%. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для умень­шения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество иона хлора.

Несмотря на практически полный переход золота и серебра в шлам, они все же в небольшом количестве попадают в катодные осадки. Объясняется это механическим захватом взмученного шлама и отчасти явлением катофореза. На механический перенос шлама на катод влияют применяемая плотность тока и взаимосвя­занная с ней скорость циркуляции электролита. С увеличением скорости циркуляции вследствие взмучивания шлама переход золо­та и серебра на катод возрастает. При выборе плотности тока и способа циркуляции электролита необходимо учитывать содержание благородных металлов в анодах. В случае их повышенного содер­жания плотность тока должна быть меньше. Снижению переноса шлама на катод способствует также наличие в ванне зоны отстаи­вания (область от нижнего конца катода до дна ванны). На многих заводах электролит перед его возвращением в ванну в цикле цирку­ляции подвергают фильтрованию, что уменьшает потери шлама и обеспечивает получение более чистой меди.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси IV группы). Хотя в принципе химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специаль­ных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99% селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом'.

Основными характеристиками, определяющими параметры и пока­затели электролитического рафинирования меди, являются плот­ность тока, выход металла по току, напряжение на ванне, удельный расход электроэнергии.

Плотность тока является важнейшим параметром процесса элек­тролиза. Она выражается в амперах на единицу поверхности элек­трода ( D = I / S ). В металлургии меди ее принято выражать в ампе­рах на квадратный метр площади катодов. По закону Фарадея на каждый 1 А • ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А • ч. Следова­тельно, с увеличением плотности тока интенсивность (производи­тельность) процесса электролиза возрастает. Величина плотности тока, при которой проводят процесс элек­тролитического рафинирования, определяет все его основные техни­ко-экономические показатели: напряжение на ванне, выход по току, расход электроэнергии, а также капитальные и эксплуатационные затраты. С увеличением плотности тока при прочих равных услови­ях увеличивается производительность цеха, уменьшаются число потребных ванн, затраты на капитальное строительство и рабочую силу, но возрастают затраты на электроэнергию. Следует отметить, однако, что с увеличением плотности тока увеличиваются потери благородных металлов за счет большего взмучивания шлама и захвата его растущим катод­ным осадком. В настоящее время применение особых режимов элек­тролиза (реверсивного тока, измененной системы циркуляции элек­тролита и др.) позволяет довести плотность тока до 500 А/м2 и более.

Электрохимический эквивалент меди составляет 1,1857 г/А • ч. Однако практически при электролизе для выделения 1 г-экв метал­ла расходуется электричества больше. Это кажущееся противоречие объясняется тем, что часть электрического тока расходуется на побочные электрохимические процессы и утечку тока. Степень использования тока на основной электрохимический процесс назы­вается выходом металла по току.

В практике электрометаллургии цветных металлов в большин­стве случаев приходится иметь дело с катодным выходом по току, так как масса катодного осадка определяет конечный выход товар­ной продукции. Преднамеренный повышенный перевод меди в электролит за счет химического растворения часто обусловливают конъюнктурными соображениями. Избыточная медь может быть выделена из электроли­та в виде медного купороса при его регенерации. В тех случаях, когда потребность в медном купоросе, используемом в основном для борьбы с болезнями и вредителями сельскохозяйственных растений, очень велика (например, в НРБ), допускается работа электролиз­ных цехов с повышенной температурой электролита.

Выбор технологии плавки на штейне

Почти столетие в металлургии меди и около полувека в металлур­гии никеля (в Канаде) «господствует» отражательная плавка. Свое широкое распространение она получила благодаря освоенности плавки применительно к переработке различных видов мелких руд­ных материалов, главным образом флотационных концентратов, простоте организации процесса почти в любых условиях металлургического производства. Основными причинами острой необходи­мости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами окси­дов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необхо­димостью активного использования теплотворной способности суль­фидов и ряда других рассмотренных выше факторов были разрабо­таны и освоены новые способы плавки медного сырья. Главным образом это — автогенные процессы, совмещающие в себе обжиг, плавку и конвертирование. В этих процессах большая часть серы переходит в отходящие газы с достаточно высоким и постоянным содержанием SO2.

Ниже приведены сравнительные основные технико-эконо­мические показатели применяемых в настоящее время в медной промышленности пирометаллургических процессов.

Уже в начальной стадии освоения процесса плавки в жидкой ванне достигнута удельная производительность, превышающая более чем в 15 раз производительность отражательной печи при плавке сырой шихты, и в 6—8 раз производительность КВП и фин­ской технологии. Возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков.

Процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов. Для осущест­вления процесса создана надежная и долговечная аппаратура. Про­цесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава. По своим показателям он превосходит все известные в мировой практике процессы. Процесс следует считать в основном освоенным и заслуживающим широкого и быстрого внедрения в отечественной медной и никелевой промышленности.

Помимо основного использования для плавки сульфидных кон­центратов на штейн, плавка в жидкой ванне пригодна для более широкого применения. При внедрении процесса в жидкой ванне необходимо учитывать его возможности, пути и направления раз­вития, которые будут осуществляться уже в недалеком будущем.

К перспективным направлениям относятся прежде всего прямое получение черновой меди и глубокое обеднение шлаков, прямое получение медно-никелевого файнштейна, плавка коллективных медно-цинковых концентратов, комплексная переработка отвальных шлаков. Заслуживает внимания также использование принципов плавки в жидкой ванне для переработки окисленных никелевых и железных руд.

Сравнительные технико-экономические показатели некоторых видов плавки сульфидных медных концентратов

Показатель ПЖВ КФП Финская КИ ВЦЭТ Норанда Мицубиси Отража­тельная плавка сырой шихты

Удельный проплав,

т/(м2 • сут)

60—80

10—13

9—12

3—5

10—11

До 20

4—5

Содержание меди, %:

в штейне

45—55

37—40

60

40—50

70-75

65

20—30

в шлаке (без обед­

нения)

0,5—0,6

До 1,2

1—1,5

0,3—0,6

5

0,5

0,4—0,5

Содержание Si02 в

шлаке, %

30—32

28—34

29—30

30—34

22

30—35

34—42

Влажность шихты, % 6—8 <1 <1 <1 10—13 <1 6—8

Максимальная круп­

ность шихты, мм

До 50

0,1

0,1

0,1

10

1

5

Пылевынос, % 1 9—12 7—10 5 3—5 1—2

Содержание Оа в

дутье, %

60—65

95

35—40

95

26—28

45

До 25

Содержание SOz в

газах, %

20—40

70—75

18—20

35—50

6—7

35

1—2

Расход условного топ­

лива, %

До 2

До 2

До 5

10—12

9—10

3—5

18—22

Процесс ПЖВ обеспечивает лучшую производительность среди всех типов процессов, превосходя их на десятки процентов. Содержание меди в штейне составляет порядка 45-55%, что является средним уровнем; в шлаке меди, фактически, минимальное количество, допустимое сегодняшними технологиями. Благодаря этому процессу достигается уверенное распределение 30% SiO2 в шлак. Процесс может перерабатывать достаточно крупную шихту, что снижает затраты на ее измельчение и обработку. Низкий расход топлива также вносит свою лепту в то, что технологический процесс А.В.Ванюкова один из лучших по своим технико-экономическим показателям.

Процесс плавки в жидкой ванне (ПЖВ)

Оригинальный процесс автогенной плавки сульфидных мед­ных и медно-цинковых концентратов, названный авторами данной книги «плавкой в жидкой ванне», начал разрабатываться в Совет­ском Союзе в 1951 г Дальнейшие разработка и внедрение до 1986 г. велись под общим научным руководством проф. А. В. Ванюкова.

Первые испытания этого метода плавки были проведены в лабо­раторных и заводских условиях в 1954—1956 гг. В настоящее время по методу плавки в жидкой ванне работают промышленные установки на медном заводе Норильского ГМК и Балхашском горнометаллургическом комбинате.

Схема печи для плавки в жидкой ванне:

1 — шихта; 2 — дутье; 3 — штейн; 4 — шлак; 5 — газы; 6 — кладка печи; 7 — медные литые кес­соны; 8 — фурмы; 9 загрузочная воронка; 10 — аптейк; 11 — штейновый сифон; 12 шлаковый сифон

Процесс ПЖВ запатентован в ряде зарубежных стран. При разработке процесса плавки в жидкой ванне ставилась задача создания максимально благоприятных условий для проте­кания всех физико-химических процессов. Предложено несколько вариантов технологического и аппара­турного оформления процесса в зависимости от состава исходного сырья и конечных результатов его переработки. Рассмотрим работу плавильной печи для автогенной и полуавтогенной плавки сульфид­ных медных концентратов с получением богатого штейна. Для осуществления процесса плавки предложено использовать частично кессонированную печь шахтного типа. Оптимальная длина промышленных печей определяется потреб­ной единичной мощностью агрегата, т. е. его абсолютной суточной производительностью, и может изменяться от 10 до 30 м и более. Ширина печей при этом с учетом возможностей дутьевого хозяйства и свойств расплавов составляет 2,5—3, высота шахты 6—6,5 м. Отличительной особенностью конструкции печи является высокое расположение дутьевых фурм над подом (1,5—2 м).

Содержание кислорода в дутье для обеспечения автогенного режима при плавке сухой шихты с влажностью менее 1—2% со­ставляет 40—45%, влажной (6—8% влаги) 55—65%. В печи можно плавить как мелкие материалы, так и кусковую шихту. Крупную и влажную шихту загружают непосредственно на поверхность рас­плава. При необходимости сухие мелкие и пылевидные материалы могут вдуваться через фурмы. Таким образом, плавление шихты и окисление сульфидов в процессе ПЖВ осуществляются непосред­ственно в слое расплава.

Шлак и штейн выпускаются раздельно из нижней части ванны с помощью сифонов.

К-во Просмотров: 1287
Бесплатно скачать Реферат: Металлургия цветных металлов