Реферат: Металлургия цветных металлов

Горизонтальной плоскостью по осям фурм расплав в печи делит­ся на две зоны: верхнюю надфурменную (барботируемую) и ниж­нюю подфурменную, где расплав находится в относительно спокой­ном состоянии.

В надфурменной зоне осуществляются плавление, растворение тугоплавких составляющих шихты, окисление сульфидов и укрупне­ние мелких сульфидных частиц. Крупные капли сульфидов быстро оседают в слое шлака, многократно промывая шлак за время его движения сверху вниз в подфурменной зоне. При непрерывном осу­ществлении процесса устанавливается динамическое равновесие между количеством поступающих с загрузкой мелких сульфидных частиц, скоростью их укрупнения и отделения от шлака. В резуль­тате одновременного протекания этих процессов устанавливается постоянное содержание сульфидов (капель) в шлаке, лежащее на уровне 5—10% от массы расплава. Таким образом, все процессы в надфурменной области протекают в шлако-штейновой эмульсии, в которой преобладает шлак.

Окисление сульфидов, как известно, является очень быстрым процессом и обычно не ограничивает конечную производительность агрегатов. В производственных процессах желательно не только не повышать, но даже замедлять скорость окисления сульфидов. Дей­ствительно, большие скорости окисления сульфидов, например при продувке жидких сульфидов кислородом, приводят к чрезмерному повышению температуры в области фурм.

Окисление сульфидов в шлако-штейновой эмульсии протекает менее интенсивно, чем в сульфидном расплаве, фокус горения рас­тягивается, что позволяет избежать локального повышения темпе­ратуры в области фурм даже при использовании чистого кислорода. Это в свою очередь облегчает задачу создания надежной и дол­говечной аппаратуры. При этом скорость окисления остается доста­точно высокой и степень использования кислорода на окисление сульфидов практически равна 100% при любом необходимом его количестве, подаваемом в расплав. Таким образом, и при окислении сульфидов в шлако-штейновой эмульсии скорость их окисления не лимитирует производительности агрегата. Возможность интенсив­ного окисления сульфидов в шлако-штейновой эмульсии без боль­шого локального повышения температуры в области фурм является важным достоинством плавки в жидкой ванне.

Окисление сульфидов в шлако-штейновой эмульсии представля­ет собой сложный многостадийный процесс, состоящий из окисле­ния капелек штейна, окисления растворенных в шлаке сульфидов, окисления FeO шлака до магнетита и окисления сульфидов магне­титом. Таким образом, шлак также является передатчиком кисло­рода. По последним данным, наибольшее значение имеет стадия окисления сульфидов, растворенных в шлаке.

Характерная особенность окисления сульфидов в шлако-штейно­вой эмульсии состоит в том, что оно не сопровождается образова­нием первичных железистых шлаков и выпадением мелких суль­фидных частиц. Оксиды, образующиеся на поверхности сульфидных капель, немедленно растворяются в шлаке конечного состава.

Отсутствие условий для образования значительных количеств мелкой сульфидной взвеси является важным достоинством плавки в жидкой ванне, создающим предпосылки для получения бедных отвальных шлаков.

Высокая степень использования кислорода обеспечивает про­стое управление составом штейна и соотношением количеств пода­ваемого через фурму кислорода и загружаемых за то же время концентратов. Состав штейна можно регулировать в широком диа­пазоне вплоть до получения белого матта или даже черновой меди. Напомним, что потери меди со шлаком начинают резко воз­растать, когда ее содержание в штейне превысит 60%. Поэтому при плавке на штейн, если в технологической схеме не предусматрива­ется специальное обеднение шлака, увеличивать содержание меди в штейне свыше 50—55% нецелесообразно. При получении белого матта или черновой меди в технологическую схему должна обяза­тельно включаться операция обеднения шлаков.

Растворение тугоплавких составляющих шихты является одним из относительно медленных процессов. Энергичный барботаж ванны резко ускоряет процесс растворения кварца и компонентов пустой породы, что позволяет использовать даже сравнительно крупные флюсы. Промышленные испытания показали, что при крупности кварца около 50 мм скорость его растворения не влияет на произ­водительность печи, по крайней мере, вплоть до удельного пропла­ва, равного 80 т/(м2 • сут). Высокая скорость растворения туго­плавких составляющих является важной особенностью плавки в жидкой ванне.

Минимальное содержание магнетита в шлаках — обязательное условие совершенного плавильного процесса. Как уже говорилось, с увеличением содержания магнетита резко возрастает содержание растворенной меди в шлаках. Кроме того, повышение содержания магнетита (степени окисленности системы) приводит к снижению межфазного натяжения на границе раздела штейна и шлака.

ИСХОДНЫЕ ДАННЫЕ РАСЧЕТОВ

1. Производство по влажному концентрату т/час 80
2. Состав концентрата %
Cu 17
Fe 28
S 36
SiO2 5
CaO 3
MgO 0
Al2O3 0
Zn 6
Pb 2
3. Влажность 5
4. Обогащение дутья 85
5. Содержание меди в штейне 45
6. Извлечение меди в штейн 97
7. Выход в штейн
Pb 20
Zn 35
8. Выход в газ
Pb 22
Zn 12
9. Состав кварцевого флюса
Si02 70
Влажн. 6
10. Состав шлака
Si02 33
Ca0 6
11. Подача конверторного шлака Т/час 10
12. Температура конверторного шлака C 1200
13. Температура продуктов C 1250
14. Состав топлива %
CH4 0
C 95
Влажн. 6
15. Тепло сгорания природного газа Ккал/м3 0

85% концентрата меди в виде халькопирита. Извлечение Cu из конверторного шлака – 80%. Состав конверторного шлака : Cu – 3%, Fe – 52%, SiO2 – 24%/

Содержание прочих в штейне – 1%.

Содержание O2 в техническом кислороде 96% (остальное N2)

Концентрация магнетита в конверторном шлаке – 30%.


Расчет основных сульфидных минералов

Дополним систему еще одним уравнением:

Таблица рационального состава концентрата

CuFeS2 CuS Cu2S FeS2 ZnS PbS CaCO3 MgCO3 SiO2 Al2O3 Проч. Всего
Cu 14,45 0,13 2,41 - - - - - - - - 17
Fe 12,71 - - 15,29 - - - - - - - 28
S 14,56 0,07 0,61 17,52 2,94 0,31 - - - - - 36
Zn - - - - 6 - - - - - - 6
Pb - - - - - 2 - - - - - 2
SiO2 - - - - - - - - 5 - - 5
CaO - - - - - - 3 - - - - 3
CO2 - - - - - - 2,35 - - - - 2,35
Проч. - - - - - - - - - - 0,65 0,65
Всего 41,72 0,2 3,02 32,81 8,94 2,31 5,35 - 5 - 0,65 100

Расчет состава конверторного шлака

Исходные данные:

Cu – 3%

Fe – 52%

SiO2 – 24%

Fe3O4 – 30%

Компонент Кг %
SiO2 3,16 24
Cu 0,39 3
Fe 6,84 52
O 2,28 17,32
Прочие 0,48 3,68
Итого 13,16 100

К-во Просмотров: 1285
Бесплатно скачать Реферат: Металлургия цветных металлов