Реферат: Метилцеллюлоза и карбоксиметилцеллюлоза: свойства растворов и пленок
По механической прочности щёлочерастворимые пленки близки к обычным пластифицированным целлофановым пленкам, так как имеют
прочность на разрыв в продольном направлении (6.8-8.8). 107 Н/м2 , удлинение при разрыве около 20 %.
Данные о гигроскопичности и водопоглощении пленок низкозамещенной метилцеллюлозы, представленные в табл. 4, показывают, что
Таблица 4
Гигроскопичность и водопоглощение метилцеллюлозных пленок[16]
Содержание ОСНз, % |
Гигроскопичность пленки, % | Водопоглощение пленки, % |
3,9 | 16,7 | 106 |
5,8 | 18,3 | 206 |
7,1 | 20,8 | 438 |
9,1 | 21,3 | 684 |
гигроскопичность и водопоглощение метилцеллюлозных пленок достигают больших величин, которые в значительной мере зависят от степени этерификации исходной метилцеллюлозы; увеличение содержания ОСН3 -групп в исходном продукте влечет за собой увеличение гигроскопичности и набухаемости в воде метилцеллюлозных пленок.
Структура регенерированной метилцеллюлозы и ее связь с физико-механическими свойствами пленок изучены в работе [16]. В целях сравнения исследовались пленки низкозамещенной метилцеллюлозы и метилцеллюлозы высокой степени замещения, вплоть до 3. Пленки одной и той же метилцеллюлозы высокой степени замещения получены из таких резко различных растворов, как вода и органические растворители. Такое сравнение представляет особенный интерес, ибо оно позволяет сделать вывод о построении решетки метилцеллюлозы при регенерации из раствора в зависимости не только от степени замещения, но и от растворителя. Для этого получена метилцеллюлоза высокой степени замещения (близкой к 3), способная растворяться как в воде, так и в органическом растворителе −хлороформе. Пленки из водных растворов и растворов в хлороформе получены путем отлива на стекле и испарения растворителя.
Пленки из водного раствора метилцеллюлозы (γ=180), полученные медленным испарением растворителя при комнатной температуре, имеют аморфную структуру. Однако при такой высокой степени замещения в определенных условиях вполне вероятна возможность упорядочения структуры метилцеллюлозы в готовых пленках. Такими условиями оказались прогрев пленок в среде, вызывающей набухание. Так, уже кипячение пленки в воде (метилцеллюлоза в горячей воде нерастворима) в течение 30 мин вызывает заметное увеличение порядка. Прогрев пленки в глицерине при температуре 473 К вызывает еще большее упорядочение.
Особый интерес представляет формование пленок из водных растворов метилцеллюлозы при повышенных температурах. При кипячении пленки в воде кроме упорядочения происходит уплотнение структуры, уничтожение различных внутренних дефектов, чем объясняется, по-видимому, увеличение
прочности пленки.
Формование пленок при 343 К приводит к значительному увеличению эластичности, что может объясняться более свернутой конфигурацией макромолекул, поскольку горячая вода не является растворителем для метилцеллюлозы.
Переходя далее к рассмотрению структуры пленок триметил-целлюлозы, следует отметить интересную особенность этого эфира. Триметилцеллюлоза способна растворяться не только в органических растворителях, но и в холодной воде (Т==273 К). Структура пленок триметилцеллюлозы как стереорегулярного полимера отличается высокой кристалличностью. Вода для триметилцеллюлозы является v-растворителем, поэтому пленки, сформованные из водного раствора, отличаются меньшей кристалличностью.
Электронно-микроскопическое исследование поверхности пленок МЦ и поверхности сколов, полученных в результате излома пленки, вдоль оси вытяжки при температуре жидкого азота позволило установить более мелкомасштабные детали строения пленок. При степенях вытяжки λ≤2.0 поверхность ориентированных пленок остается достаточно гладкой и ровной. Фибриллярная структура, видимая в оптический микроскоп, электронно-микроскопическим способом не обнаруживается. При λ≈2.2—2.5 на поверхности пленок появляется рельеф, образованный довольно регулярными и протяженными бороздами шириной 0.2—0.4 мкм, направленными перпендикулярно оси вытяжки. При сканировании перпендикулярно оси вытяжки (рис.1) видны поперечные складки шириной 0.3—0.5 мкм, а на некоторых участках обнаруживаются расслоения в виде микротрещин размером по ширине 0.1—0.2 мкм и длине 1.0—1.5 мкм, направленных параллельно оси вытяжки. При сканировании параллельно оси вытяжки кроме складчатой структуры становятся видимыми неровности с преимущественной ориентацией вдоль оси вытяжки. Изучение поверхности сколов обнаруживает наличие пористой структуры, размер пор колеблется от 0.1 до 1.0 мкм.
Рис 1.
Свойства регенерированной из щелочного раствора Na -КМЦ (в виде пленок)
В связи с возможностью получения вязких растворов низкозамещенной карбоксиметилцеллюлозы с достаточно высокой степенью полимеризации были приготовлены пленки и изучены их свойства.
Формование пленок проводили по методике, применявшейся и для метилцеллюлозных растворов. В табл. 5 приведены данные механической прочности пленок. Пленки из низкозамещенной карбоксиметилцеллюлозы имели хорошую механическую прочность, но малую эластичность; удлинение при разрыве этих пленок составляло всего 5—6 % .
Таблица 5
Прочность на разрыв пленок из низкозамещенной карбоксиметилцеллюлозы
Номер образца | Степень замещения γ | Концентрация раствора, % |
Прочность на разры К-во Просмотров: 620
Бесплатно скачать Реферат: Метилцеллюлоза и карбоксиметилцеллюлоза: свойства растворов и пленок
|