Реферат: Метод Дэвидона-Флетчера-Пауэлла

Факультет: АВТ.

Кафедра: АСУ.

Группа: АС-513.

Студент: Бойко Константин Анатольевич.

Преподаватель: Ренин Сергей Васильевич.

Дата: 19 октября 1997 года.

Новосибирск



Введение.

Первоначально метод был предложен Дэвидоном (Davidon [1959] ), а затем развит Флетчером и Пауэллом (Fletcher, Powell [1963] ). Метод Дэвидона - Флетчера - Пауэлла называют также и методом переменной метрики . Он попадает в общий класс квазиньютоновских процедур, в которых направления поиска задаются в виде -Dj f(y). Направление градиента является, таким образом, отклоненным в результате умножения на -Dj , где Dj - положительно определенная симметрическая матрица порядка n х n, аппроксимирующая обратную матрицу Гессе. На следующем шаге матрица Dj +1 представляется в виде суммы Dj и двух симметрических матриц ранга один каждая. В связи с этим схема иногда называется схемой коррекции ранга два .

Алгоритм Дэвидона - Флетчера - Пауэлла.

Рассмотрим алгоритм Дэвидона - Флетчера - Пауэлла минимизации дифференцируемой функции нескольких переменных. В частности, если функция квадратичная, то, как будет показано позднее, метод вырабатывает сопряженные направления и останавливается после выполнения одной итерации, т.е. после поиска вдоль каждого из сопряженных направлений.

Начальный этап .

Пусть >0 - константа для остановки. Выбрать точку х1 и начальную симметрическую положительно определенную матрицу D1 . Положить y1 = x1 , k = j = 1 и перейти к основному этапу.

Основной этап .

Шаг 1. Если çêf(yj ) çê< e, то остановиться; в противном случае положить dj = - Dj f(yj ) и взять в качестве lj оптимальное решение задачи минимизации f(yj + ldj ) при l ³ 0. Положить yj+1 = yj + lj dj . Если j < n, то перейти к шагу 2. Если j = n, то положить y1 = xk+1 = yn+1 , заменить k на k+1, положить j=1 и повторить шаг 1.

Шаг 2. Построить Dj +1 следующим образом :

, (1)

где

pj = lj dj , (2)

qj = f(yj+1 ) - f(yj ). (3)

Заменить j на j + 1 и перейти к шагу 1.

Пример.

Рассмотрим следующую задачу :

минимизировать (x1 - 2)4 + (x1 - 2x2 )2 .

Результаты вычислений методом Дэвидона - Флетчера - Пауэлла приведены в таблице 1.

Таблица 1. Результаты вычислений по методу Дэвидона - Флетчера - Пауэлла.

k

xk

f(xk )

j

yj

f(yj )

f(yj )

çêf(yj ) çê

D

dj

lj

yj+1

1

(0.00, 3.00)

(52.00)

1

2

(0.00, 3.00)

(52.00)

(2.70, 1.51)

(0.34)

(-44.00, 24.00)

(0.73, 1.28)

50.12

1.47

(44.00, -24.00)

(-0.67, -1.31)

0.062

0.22

(2.70, 1.51)

(2.55, 1.22)

2

(2.55, 1.22)

(0.1036)

1

2

(2.55, 1.22)

(0.1036)

(2.45, 1.27)

(0.0490)

(0.89, -0.44)

(0.18, 0.36)

0.99

0.40

(-0.89, 0.44)

(-0.28, -0.25)

0.11

0.64

(2.45, 1.27)

(2.27, 1.11)

3

(2.27, 1.11)

(0.008)

1

2

(2.27, 1.11)

(0.008)

(2.25, 1.13)

(0.004)

(0.18, -0.20)

(0.04, 0.04)

0.27

0.06

(-0.18, 0.20)

(-0.05, -0.03)

0.10

2.64

(2.25, 1.13)

(2.12, 1.05)

4

(2.12, 1.05)

(0.0005)

1

2

(2.12, 1.05)

(0.0005)

(2.115, 1.058)

(0.0002)

(0.05, -0.08)

(0.004, 0.004)

0.09

0.006

(-0.05, 0.08)

0.10

(2.115, 1.058)

На каждой итерации вектор dj для j = 1, 2 определяется в виде
–Dj f(yj ), где D1 ­­– единичная матрица, а D2 вычисляется по формулам (1) - (3). При
k = 1 имеем p1 = (2.7, -1.49)T , q1 = (44.73, -22,72)T . На второй итерации
p1 = (-0.1, 0.05)T , q1 = (-0.7, 0.8)T и, наконец, на третьей итерации
p1 = (-0.02, 0.02)T , q1 = (-0.14, 0.24)T . Точка yj+1 вычисляется оптимизацией вдоль направления dj при начальной точке yj для j = 1, 2. Процедура остановлена в точке
y2 = (2.115, 1.058)T на четвертой итерации, так как норма çêf(y2 ) çê= 0.006 достаточно мала. Траектория движения, полученная методом, показана на рисунке 1.

Рисунок 1. Метод Дэвидона - Флетчера - Пауэлла .

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 240
Бесплатно скачать Реферат: Метод Дэвидона-Флетчера-Пауэлла