Реферат: Метод Дэвидона-Флетчера-Пауэлла
3. Dj+1 Hpk , или, что эквивалентно, Dj+1 Hdk = dk для 1 £ k £ j, pk = lk dk .
Проведем доказательство по индукции. Для j = 1 утверждения 1 и 2 очевидны. Чтобы доказать утверждение 3, заметим прежде всего, что для любого k справедливы равенства
Hpk = H(lk dk ) = H(yk+1 - yk ) = f(yk+1 ) –
f(yk ) = qk . (7)
В частности, Hp1 = q1 . Таким образом, полагая j = 1 в (1), получаем
,
т.е. утверждение 3 справедливо при j = 1.
Теперь предположим, что утверждения 1, 2 и 3 справедливы для j £ n – 1. Покажем, что они также справедливы и для j + 1. Напомним, что по утверждению 1 теоремы 2 di T f(yj+1 ) = 0 для i £ j. По индуктивному предположению di = Dj+1 Hdi , i £ j. Таким образом, для i £ j имеем
0 = di T f(yj+1 ) = di T HDj+1
f(yj+1 ) = –di T Hdj+1 .
Ввиду предположения индукции это равенство показывает, что утверждение 2 также справедливо для j+1.
Теперь покажем, что утверждение 3 справедливо для j+1.
Полагая k £ j+1, имеем
. (8)
Учитывая (7) и полагая k = j + 1 в (8), получим, что Dj+2 Hpj+1 = pj+1 . Теперь пусть k £ j. Так как утверждение 2 справедливо для j + 1, то
pj+1 T Hpk = lk lj+1 dj+1 T Hdk = 0. (9)
По предположению индукции из (7) и вследствие того, что утверждение 2 справедливо для j + 1, получаем
. (10)
Подставляя (9) и (10) в (8) и учитывая предположение индукции, получаем
.
Таким образом, утверждение 3 справедливо для j+1.
Осталось показать, что утверждение 1 справедливо для j+1. Предположим, что . Умножая это равенство на
и учитывая, что утверждение 2 справедливо для j+1, получаем, что
. По условию теоремы
, а по лемме 1 матрица
положительно определена, так что
. Так как H положительно определена, то
и, следовательно,
. Отсюда следует, что
, и так как d1 , …, dj линейно независимы по предположению индукции, то
для i = 1, …, j. Таким образом, d1 , …, dj +1 линейно независимы и утверждение 1 справедливо для j+1. Следовательно, утверждения 1, 2 и 3 выполняются. В частности сопряжённость d1 , …, dn следует из утверждений 1 и 2, если положить j = n.
Пусть теперь j = n в утверждении 3. Тогда для k = 1, …, n. Если в качестве D взять матрицу, столбцами которой являются векторы d1 , …, dn , то
. Так как D имеет обратную, то
, что возможно только в том случае, если
. Наконец,
является оптимальным решением по теореме 2.
Теорема доказана.
Список литературы.
1. Базара М., Шетти К. «Нелинейное программирование. Теория и алгоритмы». М., 1982.
2. Химмельблау Д. «Прикладное нелинейное программирование». М., 1975.