Реферат: Метод хорд
Подставляя в эту формулу значения, получим уравнение хорды AB:
.
Пусть x1 - точка пересечения хорды с осью x, так как y = 0, то
x1 может считаться приближенным значением корня.
Аналогично для хорды, проходящей через точки и , вычисляется следующее приближение корня:
В общем случае формулу метода хорд имеет вид:
(1)
Если первая и вторая производные имеют разные знаки, т.е. , то все приближения к корню выполняются со стороны правой границы отрезка (рис.2) и вычисляются по формуле:
(2)
Выбор формулы в каждом конкретном случае зависит от вида функции и осуществляется по правилу: неподвижной является такая граница отрезка изоляции корня, для которой знак функции совпадает со знаком второй производной. Формула (1) используется в том случае, когда . Если справедливо неравенство , то целесообразно применять формулу (2).
Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением
Если обозначить через m наименьшее значение |f'(x)| на промежутке [a, b], которое можно определить заранее, то получим формулу для оценки точности вычисления корня:
или
где - заданная погрешность вычислений.
Список идентификаторов.
a – начало отрезка,
b – конец отрезка,
eps – погрешность вычислений,
x – искомое значение корня,
min – модуль значения производной функции в начале отрезка,
d – модуль значения производной функции в конце отрезка,
x0 – точка, в которой мы ищем производную.
****************************************************************
Program kursovaia;
uses crt;