Реферат: Метод математической индукции
Доказать, что при любом натуральном n>1
.
Решение.
Обозначим левую часть неравенства через .
, следовательно, при n=2 неравенство справедливо.
Пусть при некотором k. Докажем, что тогда и
. Имеем
,
.
Сравнивая и
, имеем
, т.е.
.
При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но
, значит, и
.
Пример 2. Найти ошибку в рассуждении.
Утверждение. При любом натуральном n справедливо неравенство .
Доказательство.
Пусть неравенство справедливо при n=k, где k – некоторое натуральное число, т.е.
. (1)
Докажем, что тогда неравенство справедливо и при n=k+1, т.е.
.
Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1)
, а к правой 2. Получим справедливое неравенство
, или
. Утверждение доказано.
Пример 3. Доказать, что , где
>-1,
, n – натуральное число, большее 1.
Решение.
При n=2 неравенство справедливо, так как .
Пусть неравенство справедливо при n=k, где k – некоторое натуральное число, т.е.
. (1)
Покажем, что тогда неравенство справедливо и при n=k+1, т.е.
. (2)
Действительно, по условию, , поэтому справедливо неравенство
, (3)
полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так:
. Отбросив в правой части последнего неравенства положительное слагаемое
, получим справедливое неравенство (2).
Пример 4. Доказать, что
(1)
где ,
, n – натуральное число, большее 1.
Решение.
При n=2 неравенство (1) принимает вид
. (2)
Так как , то справедливо неравенство
. (3)
Прибавив к каждой части неравенства (3) по , получим неравенство (2).
Этим доказано, что при n=2 неравенство (1) справедливо.
Пусть неравенство (1) справедливо при n=k, где k – некоторое натуральное число, т.е.
. (4)
Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.
(5)
Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:
. (6)
Для того чтобы доказать справедливость неравенства (5), достаточно показать, что
, (7)
или, что то же самое,
. (8)