Реферат: Метод математической индукции
Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.
Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.
Метод математической индукции в решении задач на делимость.
С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.
Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.
Пример 1 . Если n – натуральное число, то число четное.
При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k – четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.
Пример 2. Доказать истинность предложения
A(n)={число 5 кратно 19}, n – натуральное число.
Решение.
Высказывание А(1)={число кратно 19} истинно.
Предположим, что для некоторого значения n=k
А(k)={число кратно 19} истинно. Тогда, так как
, очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.
Доказательство тождеств с помощью метода математической индукции
Доказать , что при всех допустимых значениях x имеет место тождество:
Решение. Надо доказать , что тождество справедливо при всех x , кроме x =0, 1, -1.
При n =1 имеем:
,
т.е. при n=1 тождество выполняется.
Предположим , что
Докажем , что тогда
Имеем:
Итак, тождество верно для любого натурального числа n .
Метод математической индукции в применение к другим задачам.
Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.
Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.
Решение.
При n=2 правильный 2n – угольник есть квадрат; его сторона . Далее, согласно формуле удвоения
находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2n – угольника при любом равна
. (1)
Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения
,
откуда следует, что формула (1) справедлива при всех n.
Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?
Решение.
Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.
Предположим, что мы уже знаем, что каждый k-угольник, где k<n, разбивается непересекающимися диагоналями на k-2 треугольника (независимо от способа разбиения). Рассмотрим одно из разбиений n-угольника А1 А2 …Аn на треугольники.
Аn
А1 А2
Пусть А1 Аk – одна из диагоналей этого разбиения; она делит n-угольник А1 А2 …Аn на k-угольник A1 A2 …Ak и (n-k+2)-угольник А1 Аk Ak +1 …An . В силу сделанного предположения, общее число треугольников разбиения будет равно
(k-2)+[(n-k+2)-2]=n-2;
тем самым наше утверждение доказано для всех n.
Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.
Решение.
Для треугольника это число равно, очевидно, единице: P(3)=1.