Реферат: Метод наименьших квадратов в случае интегральной и дискретной нормы Гаусса
(20)
так, чтобы минимизировалась интегральная норма невязки Гаусса :
(21)
иначе говоря, нам нужно минимизировать интеграл
(22)
Для решения этой задачи подставим (20) в (22), тогда функционал (22) превратится в функцию многих переменных, т.е. . Условия же минимума функции многих переменных имеют вид:
, (23)
Эти условия приобретают вид:
(24)
т.е.
(25)
Определитель этой системы представляет собой определитель Грама для функций , в , поэтому система (25) имеет единственное решение . Подставляя эти значения в разложение (20) имеем приближение для . Характер приближения оценивается соответствующей нормой невязки .
Задача аппроксимации функции заданной аналитически часто применяется для вычисления интегралов.
2.3 Числовые примеры на применение метода наименьших квадратов Гаусса для приближения функций заданных таблично или аналитически
а) Рассмотрим пример в случае табличного задания функции :
Пример 1: пусть функция задана таблично:
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | |
0.31 | 0.82 | 1.29 | 1.85 | 2.51 | 3.02 |
с помощью метода наименьших квадратов аппроксимировать эту функцию в классе линейных функций. Т.е. допускаем, что . Для нахождения коэффициентов , составляем невязку по дискретной норме Гаусса:
(26)
Необходимые условия минимума для имеют вид:
(27)
Из (27) – получаем нормальные уравнения Гаусса:
(28)
Решение имеет вид:
(29)
т.е.
(30)
б) Теперь, рассмотрим пример в случае приближения сложных аналитически заданных функций, боллее простыми функциями.
Пример 2: Функцию , заданную на интервале аппроксимировать линейной функцией , определив параметры и по методу Гаусса (используем интегральную норму невязки Гаусса).
Решение: интегральная норма невязки для данной функции имеет вид: