Реферат: Метод вспомогательных секущих сфер

Поэтому в решении задачи можно применить способ концентрических сфер, центр которых будет лежать в точке пересечения осей поверхностей. Сферы, проведенные из центра 0 (о , о '), будут пересекать каждую из поверхностей по окружности. На плоскость проекций V эти окружности будут проецироваться в прямолинейные отрезки. Фронтальная проекция линии пересечения может быть построена без использования других проекций поверхностей.

Однако в задаче требуется построить и горизонтальную проекцию линии пересечения.

Сначала необходимо построить фронтальные проекции точек, принадлежащих линии пересечения. Две из них — 1' и 2' точек I и II могут быть отмечены на чертеже без дополнительных построений, остальные 3', 4', 5' и 6' найдены с помощью сфер. На чертеже проведены фронтальные проекции сфер радиусами R1 и R2 из центра' о '. Проекции точек V и VI получены на сфере, вписанной в поверхность вращения. Затем находят горизонтальные проекции точек. Две из них - 1 и 2 найдены на линиях связи по фронтальным 1' и 2'. Для построения горизонтальных проекций 3, 4, 5 и 6 точек III, IV, V и VI использованы горизонтальные проекции окружностей, по которым вспомогательные сферы пересекают поверхность вращения и на которых лежат эти точки.

Изучив закономерность получающихся проекций линии пересечения заданных кривых поверхностей, как и проекций других линий в ранее рассмотренных примерах, можно установить, что линия пересечения двух поверхностей второго порядка, имеющих общую плоскость симметрии, проецируется на плоскость, параллельную плоскости симметрии, в виде кривой второго порядка.

Способ концентрических сфер применяют для построения линии пересечения двух поверхностей вращения общего вида с пересекающимися осями (с общей плоскостью симметрии). Каждая из этих поверхностей имеет семейство окружностей, по которым она пересекается концентрическими сферами.

Пусть две поверхности вращения с пересекающимися осями и общей фронтальной плоскостью симметрии заданы одной фронтальной их проекцией (рис. 11). Точки пересечения меридианов поверхностей вращения принадлежат искомой линии пересечения поверхностей. Их определяем непосредственно (без каких-либо дополнительных построений) на чертеже.

Другие точки линии пересечения можно построить следующим образом. Из центра оо ' пересечения осей проведем сферу радиусом R . Фронтальной проекцией сферы является окружность радиусом R , проведенная из центра о '. Эта вспомогательная сфера пересекает заданные поверхности вращения по окружностям. Окружности на чертеже изображаются отрезками прямых. Они пересекаются в точках 11' и 22'. Проекции этих точек есть точки пересечения проекций окружностей. Точки 1' и 2' принадлежат фронтальной проекции искомой линии пересечения поверхностей вращения. Изменяя радиус R вспомогательной секущей сферы, можно получить последовательный ряд точек линии пересечения.

Вспомогательные секущие эксцентрические сферы применяют при построении линии пересечения двух поверхностей вращения, имеющих общую плоскость симметрии. Оси поверхностей вращения не пересекаются. Каждая из таких поверхностей имеет семейство окружностей, по которым пересекаются эксцентрические сферы.

Рассмотрим пример построения линии пересечения двух поверхностей вращения с общей плоскостью симметрии; одна из поверхностей - сфера (рис. 12). Этот пример может быть решен уже известными способами - пользуясь 'вспомогательными секущими плоскостями уровня или способом концентрических сфер. Здесь ось поверхности вращения и центр сферы располагаются в одной фронтальной плоскости.

Любая вспомогательная секущая сфера радиусом R с центром на оси поверхности вращения пересекает поверхность вращения и данную сферу по окружностям. Окружности пересекаются в точках искомой линии пересечения поверхностей.

Выбирая другие секущие сферы различных радиусов и с различными положениями центров на оси поверхности вращения, получим ряд точек искомой линии пересечения поверхностей. Такой прием решения называют способом эксцентрических сфер.

Рассмотрим другой пример, где линию пересечения поверхностей вращения можно построить способом эксцентрических сфер.

Пусть кольцо (тор) пересекают конус вращения и поверхность вращения общего вида (рис.13). Все три поверхности имеют одну общую плоскость симметрии. Оси пересекающихся поверхностей между собой не пересекаются.

Поверхности на чертеже заданы фронтальными их очерками. Здесь на каждой из пересекающихся поверхностей имеются круговые сечения. Кольцо имеет две системы круговых сечений. Одна система таких сечений находится в плоскостях, перпендикулярных к оси вращения, другая - в проецирующих плоскостях, вращающихся вокруг этой оси.

При построении линии пересечения поверхностей прежде всего необходимо определить ее опорные точки - точки пересечения очерковых образующих поверхностей. Затем через ось вращения поверхности кольца проводим фронтально- проецирующую плоскость Mv. Она пересекает кольцо по окружности. Центр сферы, пересекающей кольцо по этой окружности, находится на перпендикуляре, восставленном из центра окружности к плоскости Mv .

Для пересечения конуса (поверхности вращения) вспомогательной секущей сферой по окружности надо, чтобы центр такой сферы находился бы на оси конуса вращения (поверхности вращения).

Точка оо ' пересечения перпендикуляра с осью конуса вращения (поверхности вращения) является центром вспомогательной секущей сферы соответствующего радиуса R. Такая вспомогательная секущая сфера пересекает кольцо и данную поверхность по окружностям, фронтальные проекции которых - отрезки прямых. Точки пересечения окружностей принадлежат искомой линии пересечения поверхностей.

Аналогично можно определить последовательный ряд точек линии пересечения поверхностей. Вспомогательные сферы имеют различные центры на оси конуса (поверхности вращения).

На чертеже построены фронтальные проекции линии пересечения. Горизонтальные проекции строят, пользуясь параллелями поверхностей, которые проецируются на горизонтальную плоскость проекций в виде окружностей.

Способ эксцентрических сфер можно применить и для построения линии пересечения, когда одна из пересекающихся поверхностей не является поверхностью вращения. Необходимо, чтобы только такая поверхность имела семейство круговых сечений, центры которых и ось поверхности вращения имели бы одну плоскость симметрии.

На рис. 14 показаны пересекающиеся конус вращения и эллиптический конус с круговым основанием. Покажем построения линии пересечения поверхностей.

Возьмем произвольно круговое сечение плоскости Mv эллиптического конуса, проецирующееся на фронтальную плоскость проекций в отрезок 1'2'. Из его центра восставляем перпендикуляр к плоскости до пересечения в точке оо ' с осью конуса вращения.

Сфера соответствующего радиуса R , проведенная из центра оо ', пересекает конус вращения по окружности, проецирующейся на фронтальную плоскость V отрезком 3'4', и пересекает эллиптическую поверхность по второй окружности, проецирующейся на плоскость V в отрезок 5'6'. Точки а ' и b ' пересечения проекций окружностей являются проекциями точек аа ' н bb ' искомой линии пересечения поверхностей (каждая из точек а ' и b ' представляет собой проекции двух точек).

Возьмем другое круговое сечение эллиптического конуса плоскостью M IV и повторим построения. Линия пересечения поверхностей проходит через точки пересечения очерковых образующих.

Литература

1. В.Н.Виноградов. «Начертательная геометрия» - Минск.: Высшая школа, 1977.

2. А.Д.Посвянский. «Краткий курс начертательной геометрии» - М.: Высшая школа, 1974.

3. А.В.Бубенников, М.Я.Громов «Начертательная геометрия» - Высшая школа, 1973.

К-во Просмотров: 337
Бесплатно скачать Реферат: Метод вспомогательных секущих сфер