Реферат: Метод вспомогательных секущих сфер
Выполнил :
студент гр. ЭСиС-107.
Проверил:
Митин М.С.
Уфа
2002
1. Введение 3
2. Способ концентрических сфер 3
3. Примеры 3
4. Способ эксцентрических сфер 6
5. Примеры использования способов концентрических
и эксцентрических сфер 9
6. Список литературы 14
Введение
При построении линии пересечения двух поверхностей способом вспомогательных сфер возможны два случая. В одном из них пользуются сферами, проведенными из одного, общего для всех сфер центра, а в другом - сферами, проведенными из разных центров. В первом случае имеем способ концентрических сфер, во втором - способ эксцентрических сфер.
Вначале рассмотрим способ концентрических сфер, для этого предварительно остановимся на пересечении соосных поверхностей вращения (поверхностей вращения с одной осью).
Нетрудно видеть, что две соосные поверхности вращения пересекаются друг с другом по окружностям, причем число последних равно числу точек пересечения меридианов поверхностей.
В самом деле, если одна поверхность образуется вращением меридиана l (l2 ), а другая - меридиана m (m2 ) около общей оси i (i2 ) (рис. 1), то общие точки меридианов А (А2 ), В (В2 ) и С (С2 ) будут описывать окружности, общие для данных поверхностей. При этом, если общая ось поверхностей вращения параллельна какой-нибудь плоскости проекций, то эти окружности будут проецироваться на данную плоскость, в виде отрезков прямых.
Необходимо отметить частный случай пересечения двух соосных поверхностей вращения, когда одна из этих поверхностей является сферой. Если центр сферы находится на оси какой-нибудь поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получатся окружности (рис. 2). Это свойство сферы с центром на оси какой-либо поверхности вращения и положено в основу способа концентрических сфер.
Способ концентрических сфер.
Выясним на примерах условия, при которых можно построить линию пересечения двух поверхностей указанным способом.
Пример 1. Построить линию пересечения цилиндра и конуса вращения, оси которых i и f пересекаются в некоторой точке 0 и параллельны плоскости проекций П2 (рис. 3).
Проведем из точки О пересечения осей данных поверхностей, как из центра, произвольную сферу, пересекающую каждую из данных поверхностей, эта сфера будет соосна с данными поверхностями. Сфера пересечется с каждый из данных поверхностей по окружностям. Эти окружности изобразятся на плоскости проекций П2 отрезками прямых, что следует из параллельности осей данных поверхностей плоскости П2 . В пересечении отрезков прямых, изображающих трудности, мы получим проекции точек, принадлежащих обеим данным поверхностям, а значит, и искомой линии пересечения.
Вначале должны быть построены некоторые опорные точки. Так как обе данные поверхности имеют общую плоскость симметрии, параллельную плоскости проекций II2 , то их контурные образующие, по отношению к плоскости П2 , пересекаются. Точки А, В, С и D пересечения этих образующих являются точками видимости линии пересечения поверхностей.
Далее следует определить радиусы максимальной и минимальной сфер, пригодных для отыскания точек Линии пересечения.
Радиус максимальной сферы R max равен pасстоянию от проекции 0 2 центра сфер до наиболее удаленной точки пересечения очерковых образующих, в данном случае до т очки А 2 .
Чтобы определить радиус наименьшей сферы R min необходимо провести через точку 0 нормали к очерковым образующим данных поверхностей. Тогда больший из отрезков этих нормалей и будет R min . В этом случае сфера минимального радиуса будет касаться одной из данных поверхностей, а со второй - пересекаться. Если же взять в качестве R min меньший отрезок, то одна из данных поверхностей с такой сферой не пересечется. В данном примере сферой минимального радиуса будет сфера, касающаяся цилиндрической поверхности. Эта сфера касается цилиндрической поверхности по окружности 1 - 2; коническую поверхность она пересекает по двум окружностям 3 - 4 и 5 - б. Точки Е, F и G, Н пересечения этих окружностей будут точками искомой линии пересечения.
Для построения других точек линии пересечения проводят несколько концентрических сфер с центром в точке О , причем радиус R этих сфер должен изменяться в пределах R min <R< R max .
На рис. 3 проведена одна дополнительная сфера радиуса R . Она пересекает цилиндрическую поверхность по окружностям 7 - 8 и 9 - 10, а коническую поверхность - по окружностям 11 - 12 и 13 - 14. В пересечении этих окружностей получаем точки К, L, М, N и Р, Q , принадлежащие линии пересечения.
Чтобы построить горизонтальные проекции точек линии пересечения следует воспользоваться окружностями той или другой из данных поверхностей, содержащими искомые точки. В данном примере удобнее использовать окружности конической поверхности, так как они не искажаются на плоскости проекций II1 .
Если оси данных поверхностей вращения пересекаются, но не параллельны какой-либо плоскости проекций, то можно при помощи замены плоскостей проекций привести их в положение, параллельное новой плоскости проекций.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--