Реферат: Методи прогнозування у різних галузях
Прямі експертні оцінки по ознаці апарату реалізації діляться на види експертного опиту і експертного аналізу. В першому випадку використовуються спеціальні процедури формування питань, організації отримання на них відповідей, обробки одержаних відповідей і формування остаточного результату. В другому - основним апаратом дослідження є цілеспрямований аналіз об'єкту прогнозування з боку експерта або колективу експертів, які самі ставлять і вирішують питання, що ведуть до поставленої мети.
Експертні оцінки із зворотним зв'язком в своєму апараті мають три види методів: експертний опит; генерацію ідей; ігрове моделювання. Перший вигляд характеризується процедурами регламентованого неконтактного опиту експертів переміжними зворотними зв'язками в розглянутому вище значенні. Другий - побудований на процедурах безпосереднього спілкування експертів в процесі обміну думками по поставленій проблемі. Він характеризується відсутністю питань і відповідей і направлений на взаємне стимулювання творчої діяльності експертів. Третій вигляд використовує апарат теорії ігор і її прикладних розділів. Як правило, реалізується на поєднанні динамічної взаємодії колективів експертів і обчислювальної машини, що імітує об'єкт прогнозування в можливих майбутніх ситуаціях.
Нарешті, останній, четвертий, рівень класифікації підрозділяє види методів третього рівня на окремі методи і групи методів по деяких локальних для кожного виду поєднанням класифікаційних ознак, з яких вказати один загальний для всього рівня в цілому неможливо.
2.2 Екстраполяційні методи прогнозування
Методи екстраполяції тенденцій є, мабуть, найпоширенішими і самими розробленими серед всієї сукупності методів прогнозування. Використовування екстраполяції в прогнозуванні має в своїй основі припущення про те, що даний процес зміни змінної є поєднанням двох складових-регулярної і випадкової.
Вважається, що регулярна складова f (а, х) є гладкою функцією від аргументу (в більшості випадків - часу), описуваною кінцевомірним вектором параметрів а, які зберігають свої значення на періоді попередження прогнозу. Ця складова називається також трендом, рівнем, детермінованою основою процесу, тенденцією. Під всіма цими термінами лежить інтуїтивне уявлення про якесь обчищене від перешкод єство аналізованого процесу. Інтуїтивне, тому що для більшості економічних, технічних, природних процесів не можна однозначно відділити тренд від випадкової складової. Все залежить від того, яку мету переслідує це розділення і з якою точністю його здійснювати.
Випадкова складова n (х) звичайно вважається некорельованим випадковим процесом з нульовим математичним очікуванням. Її оцінки необхідні для подальшого визначення точністних характеристик прогнозу.
Екстраполяційні методи прогнозування основний упор роблять на виділення якнайкращого в деякому розумінні опису тренда і на визначення прогнозних значень шляхом його екстраполяції. Методи екстраполяції багато в чому перетинаються з методами прогнозування по регресійних моделях. Іноді їх відмінності зводяться лише до відмінностей в термінології, позначеннях або написанні формул. Проте сама по собі прогнозна екстраполяція має ряд специфічних рис і прийомів, що дозволяють зараховувати її до деякого самостійного виду методів прогнозування.
Специфічними рисами прогнозної екстраполяції можна назвати методи попередньої обробки числового ряду з метою перетворення його до вигляду, зручного для прогнозування, а також аналіз логіки і фізики прогнозованого процесу, що робить істотний вплив як па вибір виду екстраполюючої функції, так і на визначення меж зміни її параметрів.
2.2.1 Попередня обробка початкової інформації в задачах прогнозної екстраполяції
Попередня обробка початкового числового ряду направлена на рішення наступних задач (всіх або частини з них): понизити вплив випадкової складової в початковому числовому ряду, тобто наблизити його до тренда; представити інформацію, що міститься в числовому ряду, у такому вигляді, щоб істотно понизити трудність математичного опису тренда. Основними методами рішення цих задач є процедури згладжування і вирівнювання статистичного ряду.
Процедура згладжування направлена на мінімізацію випадкових відхилень точок ряду від деякої гладкої кривої передбачуваного тренда процесу. Найбільш поширений спосіб усереднювання рівня по деякій сукупності навколишніх крапок, причому ця операція переміщається уздовж ряду крапок, у зв'язку з чим звичайно називається ковзаюча середня. В найпростішому варіанті згладжуюча функція лінійна і згладжуюча група складається з попередньої і подальшої крапок, в складніших - функція нелінійна і використовує групу довільного числа крапок.
Згладжування проводиться за допомогою многочленів, що наближають по методу якнайменших квадратів групи досвідчених крапок. Якнайкраще згладжування виходить для середніх точок групи, тому бажано вибирати непарну кількість крапок в згладжуваній групі.
Згладжування навіть в простому лінійному варіанті є у багатьох випадках вельми ефективним засобом виявлення тренда при накладенні на емпіричний числовий ряд випадкових перешкод і помилок вимірювання. Для рядів із значною амплітудою перешкоди є можливість проводити багатократне згладжування початкового числового ряду. Число послідовних циклів згладжування повинне вибиратися залежно від виду початкового ряду, від ступеня передбачуваною його зашумленості перешкодою, від мети, яку переслідує згладжування. Треба мати при цьому на увазі, що ефективність цієї процедури швидко зменшується (в більшості випадків), так що доцільно повторювати її від одного до трьох разів.
Лінійне згладжування є достатньо грубою процедурою, що виявляє загальний приблизний вид тренда. Для більш точного визначення форми згладженої кривої може застосовуватися операція нелінійного згладжування або зважені ковзаючі середні. В цьому випадку ординатам крапок, що входять до ковзаючої групи, приписується різна вага залежно від їх відстані від середини інтервалу згладжування.
Якщо згладжування направлено на первинну обробку числового ряду для виключення випадкових коливань і виявлення тренда, то вирівнювання служить цілям більш зручного представлення початкового ряду, залишаючи колишнім його значення.
Самими загальними прийомами вирівнювання є логарифмування і заміна змінних.
У випадку якщо емпірична формула передбачається тією, що містить три параметри або відомо, що функція трьох параметрична, іноді вдається шляхом деяких перетворень виключити один з параметрів, а що залишилися два привести до однієї з формул вирівнювання.
Можна розглядати вирівнювання не тільки як метод представлення початкових даних, але і як метод безпосереднього наближеного визначення параметрів функції, що апроксимує початковий числовий ряд. Часто саме так і використовується цей метод в деяких екстраполяційних прогнозах. Відзначимо, що можливість безпосереднього його використовування для визначення параметрів апроксимуючої функції визначається головним чином видом початкового числового ряду і ступенем наших знань, нашої упевненості щодо виду функції, що описує досліджуваний процес.
В тому випадку, якщо вид функції нам невідомий, вирівнювання слід розглядати як попередню процедуру, в процесі якої шляхом вживання різних формул і прийомів з'ясовується самий відповідний вид функції, що описує емпіричний ряд.
Одним з різновидів методу вирівнювання є дослідження емпіричного ряду з метою з'ясування деяких властивостей функції, що описує його. При цьому не обов'язково перетворення приводять до лінійних форм. Проте результати їх готують і полегшують процес вибору апроксимуючої функції в задачах прогностичної екстраполяції. В найпростішому випадку пропонується використовувати наступні три типи диференціальних функцій зростання:
1) Перша похідна, або абсолютна диференціальна функція зростання.
2) Відносний диференціальний коефіцієнт, або логарифмічна похідна
3) Еластичність функції
2.3 Статистичні методи
Перш ніж приступити до аналізу статистичних методів прогнозування, розглянемо деякі загальні поняття і визначення, що відносяться до кореляційних і регресійних моделей. Дві випадкові величини є кореляційно зв'язаними, якщо математичне очікування однієї з них міняється залежно від зміни іншої.
Вживання кореляційного аналізу припускає виконання наступних передумов:
а) Випадкові величини у (y1, у2..., Уn) і x (x1, x2..., Хn) можуть розглядатися як вибірка з двовимірної генеральної сукупності з нормальним законом розподілу.
б) Очікувана величина погрішності і рівна нулю
в) Окремі стахостично незалежні спостереження, тобто значення даного нагляду не повинне залежати від значення попереднього і подальшого наглядів.
г) Коваріація між помилкою, пов'язаною з одним значенням залежної змінної у, і помилкою, пов'язаною з будь-яким іншим значенням у, рівна нулю.
д) Дисперсія помилки, пов'язана з одним значенням у, рівна дисперсії помилки, пов'язаній з будь-яким іншим значенням.