Реферат: Методи прогнозування у різних галузях

ж) Безпосередня застосовність цього методу обмежується випадками, коли рівняння кривої є лінійним щодо своїх параметрів bo, bi...,bk Це, проте, не означає, що саме рівняння кривої щодо змінних повинне бути лінійним. Якщо емпіричні рівняння наглядів не є лінійними, то у багатьох випадках виявляється можливим привести їх до лінійної форми і вже. після цього застосовувати метод якнайменших квадратів.

з) Спостереження незалежних змінних проводяться без погрішності.

Перед початком кореляційного аналізу необхідно перевірити виконання цих передумов.

Зв'язок між випадковою і невипадковою величинами називається регресійним, а метод аналізу таких зв'язків - регресійним аналізом. Вживання регресійного аналізу припускає обов'язкове виконання передумов (б-г) кореляційного аналізу. Тільки при виконанні приведених передумов оцінки коефіцієнтів кореляції і регресії, одержувані за допомогою способу якнайменших квадратів, будуть незміщеними і мати мінімальну дисперсію.

Регресійний аналіз тісно пов'язаний з кореляційним. При виконанні передумов кореляційного аналізу виконуються передумови регресійного аналізу. В той же час регресійний аналіз пред'являє менш жорсткі вимоги до початкової інформації." Так, наприклад, проведення регресійного аналізу можливе навіть у разі відмінності розподілу випадкової величини від нормальної, як це часто буває для техніко-економічних величин. Як залежна змінна в регресійному аналізі використовується випадкова змінна, а як незалежна - невипадкова змінна.

По ступеню комплексності статистичні дослідження можна розділити на двовимірні і багатовимірні. Перші торкаються розгляду парних взаємозв'язків між змінними (парні кореляції і регресії) і направлені в прогнозних дослідженнях на рішення таких задач, як встановлення кількісної міри тісноти зв'язку між двома випадковими величинами, встановлення близькості цього зв'язку до лінійної, оцінки достовірності і точність прогнозів, одержаних екстраполяцією регресійної залежності. Багатовимірні методи статистичного - аналізу направлені в основному на рішення задачі системного аналізу багатовимірних стохастичних об'єктів прогнозування. Метою такого аналізу є, як правило, з'ясування внутрішніх взаємозв'язків між змінними комплексу, побудова багатовимірних функцій зв'язку змінних, виділення мінімального числа характеристик, що описують об'єкт з достатнім ступенем точності. Однією з основних задач тут є скорочення розмірності опису об'єкту прогнозування.

Таким чином, статистичні методи використовуються в основ-ном для підготовки даних, приведення їх до вигляду, придатного для виробництва прогнозу. Як правило, після їх вживання використовується один з методів екстраполяції або інтерполяції для отримання безпосередньо прогнозного результату.

2.4 Експертні методи

2.4 1 Область вживання експертних методів

Методи експертних оцінок в прогнозуванні і перспективному плануванні науково-технічного прогресу застосовуються в наступних випадках:

а) в умовах відсутності достатньо представницької і достовірної статистики характеристики об'єкту (наприклад, лазери, що голографічні запам'ятовують пристрої, раціональне використовування водних ресурсів на підприємствах);

б) в умовах великої невизначеності середовища функціонування об'єкту (наприклад, прогнозів людино-машинної системи в космосі або облік взаємовпливу областей науки і техніки);

в) при середньо і довгостроковому прогнозуванні об'єктів нових галузей промисловості, схильних сильному впливу нових відкриттів у фундаментальних науках (наприклад, мікробіологічна промисловість, квантова електроніка, атомне машинобудування);

г) в умовах дефіциту часу або екстремальних ситуаціях.

Експертна оцінка необхідна, коли немає належної теоретичної основи розвитку об'єкту. Ступінь достовірності експертизи встановлюється по абсолютній частоті, з якою оцінка експерта зрештою підтверджується наступними подіями. Існує дві категорії експертів - це вузькі фахівці і фахівці широкого профілю, що забезпечують формулювання крупних проблем і побудову моделей. Вибір експертів для прогнозу проводиться на основі їх репутації серед певної категорії фахівців. Проте не слід забувати і тієї обставини, що першокласний фахівець не завжди може достатньо кваліфікований розглянути і зрозуміти загальні, глобальні, питання. Для цієї мети потрібно привертати експертів хоча і недостатньо вузько інформованих, але володіючих здібністю до дерзання і уяви.

"експерт" в дослівному перекладі з латинської мови означає "досвідчений". Тому і у формалізованому, і в неформалізованому способах визначення експерта значне місце займають професійний досвід і розвинена на його основі інтуїція. Умови необхідності і достатності віднесення фахівця до категорії експертів вводяться таким чином.

Важливо встановити не абсолютний ступінь надійності експертної оцінки, а ступінь надійності в порівнянні з оцінкою середнього фахівця, а також кореляцію між вірогідністю його прогнозної оцінки і надійністю класу тих гіпотез, якими оперує експерт. Загалом, потрібно визначити, що таке експерт. Перерахуємо деякі вимоги, яким винен задовольняти експерт:

1) оцінки експерта повинні бути стабільні в часі і транзитивні;

2) наявність додаткової інформації про прогнозовані ознаки лише покращує оцінку експерта;

3) експерт повинен бути визнаним фахівцем в даній області знань;

4) експерт повинен володіти деяким досвідом успішних прогнозів в даній області знань.

Характеризуючи експертів, слід мати у вигляді, що в результаті вироблення оцінок можуть мати місце помилки двох видів. Помилки першого вигляду відомі в техніці вимірювань як систематичні, помилки другого вигляду - як випадкові. Експерт, схильний до помилок першого вигляду, видає значення, які стійко відрізняються від істинного убік збільшення або зменшення. Вважають, що помилки цього вигляду пов'язані з складом розуму експертів. Для корекції систематичних помилок можна застосовувати поправочні коефіцієнти або ж використовувати спеціально розроблені тренувальні ігри. Помилки другого вигляду характеризуються величиною дисперсії. Виходячи з аналізу основних видів помилок при винесенні експертних думок, можна додати до розглянутого раніше переліку вимог до експертів ще одне. Значення його полягає в тому, що слід віддати перевагу експерту, оцінки якого мають малу дисперсію і систематичне відхилення середньої помилки від нуля, експерту з середньою помилкою, рівною нулю, але з більшою дисперсією. На жаль, апріорі визначити здатність людини робити правильні експертні оцінки неможливо. Важливим засобом підготовки експертів є спеціальні тренувальні ігри.

Організація форм роботи експерта може бути програмованою або непрограмованою, а діяльність експерта може здійснюватися в усній (інтерв'ю) або у письмовій формі (відповідь на питання спеціальних таблиць експертних оцінок або вільний виклад по заданій темі).

Організація стимуляції роботи експерта полягає в розробці:

евристичних прийомів і способів, що полегшують пошук прогнозної експертної оцінки; правових норм, що гарантують експерту оформлення пріоритету і авторства, а також нерозголошування всіх науково-технічних ідей, що висуваються їм в процесі експертизи;

форм моральної, професійної і матеріальної зацікавленості експерта в експертних оцінках; організаційних форм роботи експерта (включення в план роботи і т.п.).

Виходячи з одержаної в результаті аналізу моделі об'єкту прогнозування, визначаються наук?

К-во Просмотров: 168
Бесплатно скачать Реферат: Методи прогнозування у різних галузях