Реферат: МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА)
2. Какой удар называется абсолютно упругим, абсолютно неупругим, частично упругим? Какие законы выполняются при этих ударах?
3. Что называется коэффициентом восстановления?
4. Получите из законов сохранения энергии и импульса скорость пули в момент удара и энергию диссипации при абсолютно неупругом ударе.
5. Получите соотношения для определения скорости пули и маятника после частично упругого удара.
3. ИСCЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ЧАСТИЧНО УПРУГОГО УДАРА НА ПРИМЕРЕ ВЗАИМОДЕЙСТВИЯ ДВУХ ШАРОВ
Цель работы
Определить коэффициент восстановления относительной скорости и энергию диссипации при частично упругом соударении двух шаров.
Приборы и принадлежности
Лабораторная установка (рис. 3), линейка.
Теоретическое введение
В теоретическом введении к работе «Экспериментальное изучение неупругого и упругого ударов» даны основные сведения о всех разновидностях ударов и о коэффициенте Восстановления относительной скорости. При частично упругом соударении двух шаров, когда их скорости в момент удара равны и после удара равны друг другу по величине и противоположны по направлению, коэффициент восстановления можно определить по формуле
,
где U - скорость шара после удара, U 1 = - U 2 - U - скорость шара в момент удара: V 1 = - V 2 = V .
Учитывая это можно записать
(18)
Коэффициент восстановления зависит только от материала соударяющихся шаров. Величину K проще всего определить при центральном ударе шаров равной массы. Пусть два одинаковых шара висят на нитях равной длины l (рис. 3). Если оба шара отклонить на одинаковые углы α0 и отпустить, то скорости их в момент соударения будут одинаковы. Нетрудно рассчитать величину этой скорости V , учитывая, что потенциальная энергия поднятого на высоту h шара перейдет в его кинетическую энергию
(19)
В данном опыте проще измерить не высоту подъема h, а угол α0 , на который был отклонен шар. Из рис. 3 следует, что
(20)
Если угол отклонения шаров достаточно мал, то можно принять
Поэтому
.
Учитывая это, найдем V из соотношения (19):
(21)
По аналогии можно определить и скорость шаров после удара, измерив величину угла α, на который отклонится любой из шаров после удара, т.е.
(22)
Подставляя значение U (22) и V (21), в соотношение (16), найдем коэффициент восстановления скорости
(23)
где α1 - угол отклонения после первого соударения. Если α1 - незначительно отличается от начального угла α0 , целесообразно измерить величину угла после нескольких соударений (2-5). В этом случае формула для коэффициента восстановления изменится.
После первого соударения К = α1 / α0 ;
После второго соударения К = α2 / α1 ;
После третьего соударения К = α3 / α2 ;
После любого n соударения К = αn / αn -1 ;
Перемножив все эти равенства, получим
Откуда
(24)
Частично упругий удар сопровождается, как известно, диссипацией (рассеянием) энергии: часть механической энергии переходит в другие вида энергии - энергию остаточной деформации и внутреннюю (тепловую) энергию. Энергию диссипации Еg одного шара, относящуюся к одному соударению, можно выразить через коэффициент восстановления К. Для этого запишем закон сохранения энергии для, частично упругого удара двух одинаковых шаров:
Учитывая, что
получим
Откуда
Учитывая (18), (21), имеем
(25)
Описание лабораторной установки
На лабораторной установке (рис. 3) два стальных шара расположены на бифилярных подвесах, что обеспечивает их взаимодействие в одной плоскости. Шары удерживаются в отклоненном положении двумя электромагнитами (ЭМ), обмотки которых подключаются к источнику питания одним выключателем. Электромагниту могут перемещаться, их положение фиксируется винтами. Углы отклонения шаров от положения равновесия отсчитываются по шкалам Ш в градусах. При отключении питания электромагнитов шары начинают двигаться друг к другу под действием силы тяжести.
Порядок выполнения работы
1. Установить электромагниты так, чтобы шары были отклонены на одинаковый угол α0 . Включить питание электромагнитов и отклонить шары так, чтобы они удерживались электромагнитами при натянутой нити. Измерить длину нити l.
2. Выключателем отключить питание электромагнитов и определить угол отклонения α n после нескольких соударений (n = 2 – 5). Записать в таблицу измерений угол α n отклонения шаров после последнего соударения и число соударений. Повторить опыт четыре раза и найти среднее значение α n .