Реферат: МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА)
1. Запишите и объясните первое начало термодинамики для изохорного, изобарного, изотермического и адиабатического процессов.
2. Что называют удельной и молярной теплоемкостью?
3. Какая из теплоемкостей С P или С V больше и почему?
4. Объясните уравнение Р.Майера.
5. Что называют числом степеней свободы? Как это число связано с С P , С V и γ?
6. Как и почему в опыте меняется температура газа в баллоне?
7. Запишите и объясните уравнения изотермы и адиабаты.
8. Нарисуйте на РV -диаграмме последовательно все процессы, происходящие с газом.
9. Получите рабочую формулу для определения отношения молярных теплоемкостей γ.
5. ОПРЕДЕЛЕНИЕ ИЗМЕРЕНИЯ ЭНТРОПИИ
Цель работы
Опытным путем установить зависимость изменения энтропии от теплоемкости тел при выравнивании температур тел в изолированной адиабатической термодинамической системе.
Приборы и принадлежности Калориметр, термометр, водомерный стакан, нагреватель, набор из шести: испытуемых тел: четыре железных с массами 50, 100, 150, 200 г, латунное и алюминиевое с массами 50 г каждое.
Теоретическое введение
Так же как и внутренняя энергия, энтропия является функцией состояния термодинамической системы. Если термодинамическая система получает в обратимом процессе количество теплоты δ Q при температуре Т, то отношение δ Q /T определяет изменение энтропии dS системы, т.е.
и. для обратимого процесса является полным дифференциалом. На практике обычно интересуются только изменением энтропии, а не ее абсолютным значением.
Изменение энтропии системы можно найти, используя второе начало термодинамики
где интеграл берется по пути термодинамического процесса между состояниями 1 и 2, где S1 и S2 - значения энтропии в этих состояниях. Знак равенства соответствует обратимому процессу, а знак неравенства - необратимому.
Второе начало термодинамики (31) утверждает, что при обратимом процессе изменение энтропии системы равно интегралу от между состояниями 1 и 2 по обратимому пути и больше этого интеграла по пути необратимому, т.е. в этом случае интеграл от не выражает изменение энтропии, а меньше его.
Представляет интерес изучение изменения энтропии в изолированной адиабатической системе.
Изменение энтропии в изолированной адиабатической системе при квазистатическом (обратимом) процессе равно нулю, так как , т.е.
В случае необратимых процессов в изолированной адиабатической системе также равно нулю, но изменение энтропии в такой системе уже нулю не равно и по формуле (31) для обратимых процессов не может быть вычислено. Это вычисление можно сделать, если учесть, что энтропия есть функция состояния системы и ее применение не зависит от характера пути процесса в системе, т.е. обратимого или необратимого. В этом случае для вычисления изменения энтропии можно воспользоваться любым квазистатическим (обратимым) процессом, переводящим систему из состояния 1 в 2, т.е.
В случае выравнивания температуры от T1 до Т2 твердых и жидких тел в изолированной адиабатической системе этот реальный процесс можно заменить изобарическим квазистатическим (обратимым) переходом теплоты между телами. При изобарическом процессе
где т - масса тела; СР – удельная теплоемкости тела при постоянном давлении. Для характеристики теплоемкости тел используется также и удельная теплоемкость при постоянном объеме – С V . У жидких и твердых тел разница между Ср и С V сравнительно мала, так что можно положить Ср ≈ С V и говорить просто об удельной теплоемкости жидких и твердых тел С . Нужно помнить, что удельная теплоемкость вещества С зависит от температуры, т.е. С = C(Т). Тогда изменение энтропии в этом процессе можно определить
В нашем случае вместо C(Т) будем использовать среднее значение удельной теплоемкости С в интервале температур от T1 до Т2 и считать для этого температурного интервала среднее значение удельной теплоемкости С величиной постоянной, тогда изменение энтропии будем вычислять по формуле:
В силу того, что энтропия аддитивна, полное изменение энтропии термодинамической системы можно найти, если просуммировать изменения энтропии всех отдельных тел, входящих в состав этой системы, т.е.
где ∆ S - изменение энтропии всей системы; n - число тел системы; ∆ S i - изменение энтропии одного из тел термодинамической системы.
Согласно первому началу термодинамики
сообщаемое термодинамической системе тепло идет на изменение внутренней энергии системы d U и совершение системой работы над внешними телами. В случае твердого и жидкого тел все сообщаемое тепло идет на изменение внутренней энергии, а так как объемы этих тел при нагревании почти не изменяются, то работой расширения можно пренебречь, т.е., чем больше изменение энтропии в адиабатно-изолированной системе, тем большее количество тепла необратимо переходит во внутреннюю энергию системы. Поэтому необратимые потери тепла, связанные с реальными необратимыми термодинамическими процессами в адиабатно-изолированных системах, принято оценивать по изменению энтропии.
Если в калориметр, содержащий определенное количество воды при заданной температуре, опустить нагретое тело, то произойдет теплообмен и установится общая температура. Сам калориметр помещен во внешний стакан, в результате чего система становится почти адиабатно-изолированной.
Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом энтропии, при этом температура вест частей системы в состоянии равновесия одинакова.
Изменение энтропии такой системы при выравнивании температуры погруженного тела и воды можно рассчитать по формулам (34) и (35). В состав исследуемой системы входят: испытуемое тело массой mT с удельной теплоемкостью СT и начальной температурой Т0 , вода калориметра массой mВ с удельной теплоемкостью СВ и начальной температурой Т0 . После окончания процесса теплообмена установится температура Т .