Реферат: Методика преподавания темы “Электромагнитные колебания” в средней школе с использованием компьютерных технологий
Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.
ПРУЖИНАКОНДЕНСАТОР
ГРУЗ КАТУШКА
Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.
Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие ).
Далее при перезарядке конденсатора тело будет смещаться влево от положения равновесия. Через промежуток времени, равный t=T/2, конденсатор полностью перезарядится и сила тока в цепи станет равной нулю.
Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система ), где каждая частица совершает колебания около положения равновесия.
Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени – это не что иное, как сила тока, а изменение координаты в единицу времени – скорость, то есть q’ = I, а x’ = v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.
Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.
Таблица соответствия между механическими и электрическими величинами при колебательных процессах.
Механические величины | Электрические величины |
Координата х | Заряд q |
Скорость vx | Сила тока i |
Масса m | Индуктивность L |
Потенциальная энергия kx2 /2 | Энергия электрического поля q2 /2 |
Жесткость пружины k | Величина, обратная емкости 1/C |
Кинетическая энергия mv2 /2 | Энергия магнитного поля Li2 /2 |
Урок 2.
Тема урока: Уравнение свободных гармонических колебаний в контуре. Колебаний.
Объяснение нового материала.
Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.
Материал для повторения:
· понятие электромагнитных колебаний;
· понятие энергии колебательного контура;
· соответствие электрических величин механическим величинам при колебательных процессах.
(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).
На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.
Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур – идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:
, то есть .
Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна