Реферат: Методы и приемы решения задач
Значит (2n + 1 )² - 1 : 8
Ч.Т.Д.
Б) Применение метода математической индукции к суммированию рядов.
Пример 1. Доказать формулу
, n – натуральное число.
Решение.
При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.
Предположим, что формула верна при n=k, т.е.
.
Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим
Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.
Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .
Решение.
Обозначим искомую сумму , т.е. .
При n=1 гипотеза верна.
Пусть . Покажем, что .
В самом деле,
.
Задача решена.
В) Примеры применения метода математической индукции к доказательству неравенств .
Пример 1. Доказать, что при любом натуральном n>1
.
Решение.
Обозначим левую часть неравенства через .
, следовательно, при n=2 неравенство справедливо.
Пусть при некотором k. Докажем, что тогда и . Имеем , .
Сравнивая и , имеем , т.е. .
При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .
Пример 2. Найти ошибку в рассуждении.
Утверждение. При любом натуральном n справедливо неравенство .
Доказательство.
Пусть неравенство справедливо при n=k, где k – некоторое натуральное число, т.е.
. (1)
Докажем, что тогда неравенство справедливо и при n=k+1, т.е.
.
Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.