Реферат: Методы и приемы решения задач
При n=2 неравенство справедливо, так как .
Пусть неравенство справедливо при n=k, где k – некоторое натуральное число, т.е.
. (1)
Покажем, что тогда неравенство справедливо и при n=k+1, т.е.
. (2)
Действительно, по условию, , поэтому справедливо неравенство
, (3)
полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так:.Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).
Пример 4. Доказать, что
(1)
где ,, n – натуральное число, большее 1.
Решение.
При n=2 неравенство (1) принимает вид
. (2)
Так как , то справедливо неравенство
. (3)
Прибавив к каждой части неравенства (3) по , получим неравенство (2).
Этим доказано, что при n=2 неравенство (1) справедливо.
Пусть неравенство (1) справедливо при n=k, где k – некоторое натуральное число, т.е.
. (4)
Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.
(5)
Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:
. (6)
Для того чтобы доказать справедливость неравенства (5), достаточно показать, что
, (7)
или, что то же самое,
. (8)
Неравенство (8) равносильно неравенству
. (9)
Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.
Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.
Г)Метод математической индукции в применение к другим задачам.
Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим пример.
Пример . На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?
Решение.
Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.
Предположим, что мы уже знаем, что каждый k-угольник, где k<n, разбивается непересекающимися диагоналями на k-2 треугольника (независимо от способа разбиения). Рассмотрим одно из разбиений n-угольника А1 А2 …Аn на треугольники.
Аn
А1 А2
Пусть А1 Аk – одна из диагоналей этого разбиения; она делит n-угольник А1 А2 …Аn на k-угольник A1 A2 …Ak и (n-k+2)-угольник А1 Аk Ak+1 …An . В силу сделанного предположения, общее число треугольников разбиения будет равно
(k-2)+[(n-k+2)-2]=n-2;
тем самым наше утверждение доказано для всех n.