Реферат: Методы исследования биологически активных соединений

- в методе используются только простейшие арифметические операции (сложение и умножение);

- цифровые фильтры легко адаптировать к любой конкретной ситуации;

- действия, выполняемые цифровыми фильтрами, легко поддаются интерпретации.

Конечно, никакая фильтрация не может увеличить количество информации, содержащееся в данных, но она позволяет извлечь имеющуюся информацию, сделать ее более наглядной.

В основе простейшего цифрового фильтра лежит операция усреднения: серия последовательных значений заменяется их средним арифметическим. Как известно из математической статистики, среднее характеризуется меньшим уровнем шумов (стандартным отклонением), чем исходные данные.

общая для всех методов фильтрации проблема заключается в следующем. Нестационарные (т. е. изменяющиеся в пространстве и времени) данные не могут быть адекватно описаны средним. Структура данных, имеющих форму пика, при усреднении искажается.

Возможное решение проблемы состоит в таком выборе ширины диапазона (числа точек) для усреднения, чтобы сигнал усиливался, а шум подавлялся. Эта величина, называемая шириной фильтра, является одной из самых важных его характеристик. Слишком широкий фильтр подавляет структуру данных, слишком узкий — недостаточно эффективно устраняет шумы. Простейший тип цифрового фильтра называется оконным фильтром (или дви жущимся средним). Пример его использования приведен на рисунке (F 4). После фильтрации (F 4) структура данных выражена четче, а уровень шума ниже по сравнению с исходным спектром.

На врезке (F 4) показана конкретная форма цифрового фильтра, использованного в этом примере. В простейшем случае, когда усреднение проводится по п соседним точкам, каждая точка входит в общую сумму с коэффициентом 1/n. Например, при усреднении по 8 точкам каждая точка входит с коэффициентом 1/8.

Более сложным и более эффективным является способ фильтрации, основанный на методе наименьших квадратов. В пределах окна экспериментальные данные аппроксимируют каким-либо полиномом (например, квадратичной или кубической функцией). Широко распространен метод, который предложили Савицки и Голэй. Метод так и называется «Savizky-Golaysmoothing» - сглаживание методом Савицки-Голэя.. В этом методе задается определенное число экспериментальных точек n (ширина окна), методом полиномиальной регрессии определяется сглаженное значение для каждой точки и окно передвигается дальше, проходя таким образом всю кривую. Эффективность фильтрации этим методом иллюстрирует рис. 4.

Мы начнем с изучения оптических методов. Это связано как с универсальностью этих методов, так и с тем, что оптические методы используются для детектирования в ряде других физико-химических методов, например, хроматографии.

Несомненно, наиболее простым и наиболее распространенным из оптических методов (в смысле его применения на практике) можно считать метод электронной спектроскопии. Этот метод часто называют либо УФ-спектроскопией, либо просто спектроскопией. Если химик говорит, что нужно снять спектр, определенно имеется в виду спектр в видимой или ультрафиолетовой (или в обеих) областях спектра, т.е. электронный спектр.

Видимый спектр. Спектроскопия как наука возникла после открытия Ньютона (около 1672 г.), показавшего, что величина преломления света при прохождении его через призму меняется в зависимости от цвета. Этот вывод был сделан после того, как было обнаружено, что изображения окрашенных тел при наблюдении их через призму в большей или меньшей мере смещаются в соответствии с различиями в окраске. Было установлено также, что изображение синего тела смещается больше, чем изображение красного.

В одном из последующих опытов Ньютон, используя в качестве источника света отверстие в оконной шторе, пропустил солнечный луч через стеклянную призму и таким образом получил спектр. Было известно и ранее, что сквозь призму можно наблюдать окрашенное изображение, но тогда предполагали, что эту окраску дает сама призма. Ньютон же на основании этого и других своих опытов сделал вывод, что белый свет является сложным, и в настоящее время известно, что семь первичных цветов — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый — дают вместе белый свет.

Окраска раствора позволяет характеризовать испытуемый образец. Одновременно эта окраска характеризует и ту область спектра, в которой поглощает этот образец. Соответствующие данные приведены в следующих таблицах (F 5 и 6).

Последующими открытиями было установлено, что видимая иприлегающие к ней инфракрасная и ультрафиолетовая области спектра представляют лишь очень небольшие участки всего спектра излучения, известного теперь под названием электромагнитного спектра.

Уже давно установлено, что свет представляет собой электромагнитное излучение с длиной волны, изменяющейся в определенном интервале (Рис. F 7 и 8).

При попадании на тот или иной предмет свет может отражаться, поглощаться или рассеиваться (Рис. F 9). Обычно эти три явления протекают одновременно, но доля каждого из них различна в каждом конкретном случае.

Очень важно, что поглощение света веществом происходит избирательно, в зависимости от свойств вещества. На избирательном поглощении света основаны спектральные методы анализа. Эти методы применяются для установления строения соединений, их идентификации и количественного определения.

Приборы, применяемые для таких исследований, называются спектрофотометрами, и в них используется монохроматическое излучение, т.е. излучение с определенной длиной волны.

в спектральных исследованиях помимо длины волны обычно используются следующие ее функции (рис. F 10):

волновое число - число волн на сантиметр = 1/l см-1 ;

частота колебаний n (с-1 ) – число полных колебаний в секунду.

v = Скорость света (см/сек)/ Длина волны (см) = 3´1010 / l.

Все эти единицы связаны между собой:

==
Волновое число
=
(1)
1 Частота

Длина волны Скорость света

Единицы длины волны и частоты приведены в таблице (Рис. F 11).

ЗАКОНЫ ПОГЛОЩЕНИЯ СВЕТА

Количественные измерения поглощения света любой длины волны основаны на двух законах, установленных эмпирически в 18-м и 19-м веках, которые теперь связывают с именами Бугера, Ламберта и Бера. Так, в некоторых руководствах утверждается, что независимо Бугером в 1729 г. и Ламбертом в 1760 г. был сформулирован следующий закон:

«Каждый тонкий слой постоянной толщины внутри однородной окрашенной среды поглощает определенную долю входящего в него потока излучения независимо от интенсивности этого излучения»

На самом деле, Бугер сформулировал свои выводы так: «При возрастании толщины на равные величины свет уменьшается подобно членам геометрической прогрессии». И далее: «Надлежит сделать вывод, что пропорциональными поглощению света являются не толщины, а массы вещества, содержащиеся в этих толщинах».

В 1760 г. Ламберт со ссылкой на Бугера выразил зависимость интенсивности прошедшего света от толщины слоя математической формулой. Практически во всех современных учебниках и монографиях основной закон поглощения света называют законом Бера (его фамилии на самом деле Беер) и формулируют так:

К-во Просмотров: 263
Бесплатно скачать Реферат: Методы исследования биологически активных соединений