Реферат: Методы подобия и моделирования с привлечением физических уравнений

Так как подобные явления, соответствующие решениям (3.14) и (3.12), принадлежат к одному классу, преобразование переменных по формулам (3.13) не должно изменять вида функции F. Следовательно, выяснение условий подобия данных явлений может быть сведено к исследованию условий инвариантности уравнений (3.12), (3.14) по отношению к преобразованиям подобия (3.13).

С этой целью рассмотрим возможные варианты преобразований (3.13) при различном выборе масштабов kj.

Если множители kj выбираются произвольными без каких бы то ни было ограничений, уравнениям (3.12) и (3.14) можно одновременно удовлетворить при условии

Согласно этому условию функция (3.12) должна обладать таким особым свойством, когда подобное преобразование отдельных переменных Qj приводит к подобному преобразованию функции F в целом. Зависимости вида (3.12), удовлетворяющие условиям (3.15), принадлежат к так называемым гомогенным (однородным) функциям г .


Таким образом, при произвольных масштабах kj свойствами инвариантности к подобным или, как часто говорят, к масштабным преобразованиям обладают лишь гомогенные функции F.

В работе 131] показано, что условия (3.15) ограничивают зависимости (3.12) классом степенных комплексов

Ввиду того, что ограничение (3.15) является чрезмерно жестким, а функции (3.16) не являются настолько универсальными, чтобы описать любой механический процесс, рассмотрим вопрос об инвариантности уравнения (3.12) по отношению к подобным преобразованиям (3.13) в видоизмененной постановке. Для этого откажемся от предположения о произвольности множителей kj и будем искать такие ограничения на выбор масштабов в формулах (3.13), которые обеспечивают сохранение вида функции F при выполнении преобразований подобия.

Не останавливаясь на доказательстве, укажем, что для сохранения свойства инвариантности уравнения (3.12) к группе подобных преобразований (3.13) необходимо потребовать выполнения

В качестве примера составления условий инвариантности (3.17) для конечных (алгебраических) уравнений рассмотрим элементарный пример о нагружении консольной балки сосредоточенной силой и моментом.

Пусть два геометрически подобных бруса 1 и 2 прямоугольного поперечного сечения имеют размеры /, b, h (рис. 3.2). Параметры образцов 1 и 2 будем снабжать соответствующими нижними индексами.

Каждый из образцов находится под действием сосредоточенных сил Р и моментов Му приложенных в сходственных точках 2?! и В2 с координатами хг — ll9 уг = 0, гг = О и х2 = /2 , Уъ = О, 2а = 0.

Аналогом уравнений (3.12) для рассматриваемого примера является решение задачи сопротивления материалов о напряженно-деформированном состоянии бруса для произвольной точки Аг в форме [84]


Одноименные уравнения в формулах (3.19) и (3.20) обладают важным свойством. В том случае, если масштабы kj (10 , <у0 > Щ* Ео> 8 о> Л» М0 ) не являются произвольными, а выбраны из условий (3.21), указанные уравнения для образцов 1 и 2 будут одинаковыми.

Таким образом, выполнение условий (3.21) обеспечивает инвариантность уравнений (3.18) по отношению к подобным преобразованиям (3.19). Согласно методу исследования подобия, основанному на масштабных преобразованиях физических уравнений в конечной форме, две геометрически подобные системы считаются механически подобными, если уравнения, описывающие эти системы, тождественно совпадают.

Можно показать, что в общем случае условия (3.17), обеспечивающие инвариантность физических уравнений, могут быть преобразованы в критерии подобия механических состояний или процессов, описываемых уравнениями (3.12) [311.

дикаторы подобия в различной математической форме выражают одни и те же условия механического подобия двух объектов — модели и натуры.

Перейдем к изучению подобных преобразований физических уравнений, содержащих дифференциальные операторы и переменные под знаком интеграла. Особенности анализа подобия явлений, описываемых дифференциальными и интегральными уравнениями, связаны с масштабными преобразованиями указанных операторов.


Учитывая эту аналогию между индикаторами подобия дифференциальных и алгебраических выражений, следует заключить, что при образовании индикаторов подобия для операторов дифференциальных уравнений знаки дифференциалов можно опустить, рассматривая дифференциалы как конечные приращения переменных.

В процессе подобных преобразований интегральных уравнений следует исходить из осредненных физических величин. Например, в сходственных точках объектов «6> и «s» одноименные величины относятся как (Qj)t/(Qj)s = kj. Это соотношение остается справедливым и для величин, осредненных по площади /.

К-во Просмотров: 202
Бесплатно скачать Реферат: Методы подобия и моделирования с привлечением физических уравнений