Реферат: Методы получения нанотрубок

D = -— (5.6) 3£/

где / - момент инерции сечения стержня, равный в данном случае л{г* — г*)/4. Так как толщина стенки однослойной нанотрубки составляет примерно 0.34 нм, значение г* г* очень мало, что отчасти компенсирует большое значение Е.

Углеродная нанотрубка очень упруга при изгибе. Она гнется как соломинка, но не ломается и может распрямиться без повреждений. Большинство материа­лов ломаются при изгибе из-за присутствия дефектов, таких как дислокации и границы зерен. Так как стенки углеродных нанотрубок имеют мало структур­ных дефектов, этого не происходит. Другая причина того, что они не ломаются, состоит в том, что углеродные кольца стенок в виде почти правильных шести­угольников при изгибе меняют свою структуру, но не рвутся. Это является уни­кальным следствием того факта,, что углерод-углеродные связи sp 1 гибридизиро-ваны и могут перегибридизироваться при изгибе. Степень изменения и коэффи­циенты s ~ p смешивания зависят от того, насколько изогнуты связи.

Разумеется, прочность и жесткость — не одно и то же. Модуль Юнга является мерой жесткости или упругости материала. Предел прочности характеризует не­обходимое для разрыва напряжение. Предел прочности однослойной углеродной нанотрубки составляет 45 ГПа, в то время как стальные сплавы разрушаются при 2 ГПа. Таким образом, углеродные нанотрубки примерно в 20 раз прочнее стали. Многослойные нанотрубки тоже имеют лучшие, чем у стали, механические ха­рактеристики, но они не так высоки, как у однослойных нанотрубок. Например, многослойная нанотрубка диаметром 200 нм имеет предел прочности 0,007 ТПа (7 ГПа) и модуль Юнга 0,6 ТПа.

5.5. Применения углеродных нанотрубок

Необычные свойства углеродных нанотрубок допускают множество возможных применений: от электродов батареек до электронных устройств и армирующих волокон для получения более прочных композитов. В этом разделе будут описа­ны некоторые потенциальные применения, над которыми уже ведется работа. Однако для реализации этого потенциала необходимо разработать технологию крупномасштабного производства однослойных нанотрубок. Существующие ме­тоды синтеза обеспечивают лишь небольшой выход конечного продукта, стои­мость которого на сегодня составляет около 1 500$ за грамм (680 000$ за фунт). С другой стороны, разработаны основанные на химическом осаждении методы крупномасштабного производства многослойных нанотрубок стоимостью 60$ за фунт, причем при увеличении спроса ожидается дальнейшее существенное паде­ние этой цифры. Методы, используемые для увеличения масштабов производст­ва многослойных нанотрубок, должны лечь в основу широкомасштабного произ­водства и однослойных нанотрубок. Можно надеяться, что из-за их громадного потенциала использования будут разработаны технологию крупнотоннажного синтеза, что приведет к падению цен до цифр порядка 10$ за фунт.

5.5.1. Полевая эмиссия и экранирование

При приложении небольшого электрического поля вдоль оси нанотрубки с ее концов происходит очень интенсивная эмиссия электронов. Подобные явления называют полевой эмиссией. Этот эффект легко наблюдать, прикладывая не­большое напряжение между двумя параллельными металлическими электрода­ми, на один из которых нанесена композитная паста из нанотрубок. Достаточное количество трубок окажутся перпендикулярными электроду, что позволяет на­блюдать полевую эмиссию. Одно из применений этого эффекта состоит в усо­вершенствовании плоских панельных дисплеев. Мониторы телевизоров и ком­пьютеров используют управляемую электронную пушку для облучения люми­несцентного экрана, испускающего свет требуемых цветов. Корейская корпорация Samsung разрабатывает плоский дисплей, использующий электрон­ную эмиссию углеродных нанотрубок. Тонкая пленка нанотрубок помещается на слой с управляющей электроникой и покрывается сверху стеклянной пластиной, покрытой слоем люминофора. Одна японская компания использует эффект эле­ктронной эмиссии в осветительных вакуумных лампах, таких же ярких, как и обычные лампы накаливания, но более эффективных и долговечных. Другие исследователи используют эффект при разработке новых способов генерации микроволнового излучения.

Высокая электрическая проводимость углеродных нанотрубок означает, что они будут плохо пропускать электромагнитные волны. Композитный пластик с нанотрубками может оказаться легким материалом, экранирующим электро­магнитное излучение. Это очень важный вопрос для военных, развивающих идеи цифрового представления поля боя в системах управления, контроля и свя­зи. Компьютеры и электронные устройства, являющиеся частями такой систе­мы, должны быть защищены от оружия, генерирующего электромагнитные им­пульсы.

5.5.2. Компьютеры

Недавно была показана возможность конструирования полевых транзисторов, являющихся переключающими элементами в компьютере, на основе полупро­водниковых углеродных нанотрубок, соединяющих два золотых электрода. Схе­матически такое устройство показано на рис. 5.21. При приложении небольшого напряжения к затвору, которым является кремниевая подложка, по нанотрубке между истоком и стоком течет ток. Если ток течет, элемент находится в состоя­нии «включено», и в состоянии «выключено» - в противном случае. Обнаруже­но, что небольшое напряжение на затворе может изменить проводимость нанот­рубки более чем в 106 раз, что сравнимо со значениями для кремниевых полевых транзисторов. Время переключения такого устройства будет очень маленьким, а возможная тактовая частота оценочно может составить Терагерц, что в 1 ООО раз быстрее существующих процессоров. Золотые исток и сток можно сформировать методами нанолитографии, а диаметр соединяющей их нанотрубки составляет порядка одного нанометра. Такие малые размеры позволят в перспективе помес­тить на чип большее количество переключателей. Следует особо отметить, что пока такие устройства делаются в ла­бораторных условиях поштучно, а для использования в приложениях, таких как компьютерные чипы, еще предсто­ит разработать недорогие способы массового создания подобных элемен­тов на чипе.

Основной целью разработчиков компьютерной техники является уве­личение количества переключателей на чипе. Подход к этой проблеме за­ключается в использовании переклю­чателей меньшего размера, более гон­ких соединяющих их проводников и в более плотной упаковке элементов на чипе. Однако при использовании существующих переключателей и со­единяющих их металлических прово­дов на этом пути возникают некоторые трудности. При уменьшении попереч­ного сечения металлического, напри­мер, медного проводника увеличивает­ся его сопротивление, а, следователь­но, и выделяющееся при протекании тока тепло. Нагрев может достигать та­ких значений, при которых возникает опасность плавления или испарения проводников. Однако углеродные на­нотрубки диаметром 2 нм имеют чрез­вычайно низкое сопротивление, что позволяет пропускать по ним большие токи без существенного нагрева. Это дела­ет их пригодными в качестве соединительных проводов. Очень высокая тепло­проводность нанотрубок означает, что их можно использовать и в качестве тепло-отводов, позволяющих быстро уносить с чипа избыточное тепло.

Другой активно развиваемой идеей является создание компьютера из нанот­рубок. Компьютер был бы массивом параллельных нанотрубок на подложке. Над ними с небольшим промежутком располагался бы массив нанотрубок, пер­пендикулярных нижним. Каждая трубка соединялась бы с металлическим элект­родом. Эта идея схематически проиллюстрирована на рис. 5.22. Точки пересече­ния являлись бы переключателями компьютера. Когда трубки не касаются в точ­ке пересечения, переключатель выключен, так как сопротивление между ними велико. Во включенном состоянии трубки касаются друг друга, а сопротивление соединения мало. Управление состоянием включено/выключено может осуще­ствляться токами, текущими по трубкам. По оценкам исследователей на квадрат­ном сантиметре чипа можно разместить 1012 таких элементов. На современных процессорах Пентиум расположено около 10s переключателей. Скорость пере­ключения таких устройств оценочно должна быть в 100 раз выше, чем на нынеш­нем поколении интеловских чипов. В идеале хотелось бы иметь полупроводящую трубку внизу и металлическую наверху, тогда при контакте образуется переход ме­талл-полупроводник, пропускающий ток только в одном направлении. Такой пе­реход был бы выпрямителем.

5.5.3. Топливные элементы

Углеродные нанотрубки могут быть использованы в изготовлении батареек. Ли­тий, являющийся носителем заряда в некоторых батарейках, можно помещать внутрь нанотрубок. По оценкам, в трубке можно разместить один атом лития на каждые шесть атомов углерода. Другим возможным использованием нанотру­бок является хранение в них водорода, что может быть использовано при кон­струировании топливных элементов как источников электрической энер­гии в будущих автомобилях. Топлив­ный элемент состоит из двух электро­дов и специального электролита, про­пускающего ионы водорода между ними, но не пропускающего электро­ны. Водород направляется на анод, где он ионизируется. Свободные электро­ны движутся к катоду по внешней це­пи, а ионы водорода диффундируют к катоду через электролит, где из этих ионов, электронов и кислорода образу­ются молекулы воды- Такой системе необходим источник водорода. Одна из возможностей состоит в хранении во­дорода внутри углеродных нанотрубок. По существующим оценкам, для эф­фективного использования в этом ка­честве трубка должна поглощать 6,5% водорода по весу. В настоящее время в трубку удалось поместить только 4% водорода по весу.

Элегантный метод заполнения уг­леродных нанотрубок водородом со­стоит в использовании для этого элек­трохимической ячейки, показанной на рис. 5.23. Одностенные нанотрубки в форме листа бумаги составляют от-рицаетельный электрод в растворе КОН, являющемся электролитом. Другой электрод состоит из Ni(OH)2 . Вода электролита разлагается с образо­ванием положительных ионов водоро­да (Н+ ), движущихся к отрицательному электроду из нанотрубок. Наличие связанного в трубках водорода опреде­ляется по падению интенсивности ра-мановского рассеяния, как показано на рис. 5.24, на котором представлены рамановские спектры материала до и по­сле того, как он был подвергнут вышеописанной электрохимической обработке.

5.5.4. Химические сенсоры

Установлено, что полевой транзистор, аналогичный показанному на рис. 5.21 и сделан­ный на полупроводящей хиральной нанотрубке, является чувствительным детектором раз­личных газов. Полевой транзистор помещался в сосуд емкостью 500 мл с выводами элект­ропитания и двумя клапанами для ввода и вывода газа, омывающего транзистор. Протека­ние газа, содержащего от 2 до 200 ppmN02 , со скоростью 700 мл/мин на протяжении 10 минут привело к трехкратному повышению проводимости нанотрубки. На рис. 5.25 пока­зана вольтамперная характеристика транзистора до и после контакта с N02 , демонстриру­ющая еще больший эффект. Эти данные получены при напряжении затвора, составлявшем 4 В. Такой эффект обусловлен тем, что при связывании N02 с нанотрубкой заряд перено­сится с нанотрубки на группу N02 , увеличивая концентрацию дырок в нанотрубке и ее проводимость.

Частота одной из нормальных мод колебаний, имеющих очень сильную ли­нию в рамановском спектре, также очень чувствительна к присутствию посторон­них молекул на поверхности нанотрубки. Направление и величина смещения за­висят от типа молекулы на поверхности. Этот эффект также может лечь в основу новых химических газовых сенсоров на основе углеродных нанотрубок.

5.5.5. Катализ

Катализатором называется вещество, обычно металл или сплав, увеличивающее скорость протекания химической ре­акции. Для некоторых химических ре­акций углеродные нанотрубки являют­ся катализаторами. Например, показа­но, что многослойные нанотрубки со связанными с ними снаружи атомами рутения имеют сильный каталитичес­кий эффект на реакцию гидрогениза­ции коричного альдегида (С6 Н5 СН=СНСНО) в жидкой фазе по сравнению с эффектом того же руте­ния, находящегося на других углерод­ных субстратах. Также проводились хи­мические реакции и внутри углерод­ных нанотрубок, например восстановление оксида никеля NiO до металлического никеля и А1С13 до алю­миния. Поток газообразного водорода Н2 при 475°С частично восстанавливает Мо03 до Мо02 с сопутствующим образованием паров воды внутри многослой­ных нанотрубок. Кристаллы сульфида кадмия CdS образуются внутри нанотру­бок при реакции кристаллического оксида кадмия CdO с сероводородом (H2 S) при 400°С.

5.5.6. Механическое упрочнение

Использование длинных углеродных волокон, таких как полиакрилнитрил, яв­ляется отработанной технологией увеличения прочности пластиковых компози­тов. Полиакрилнитрил имеет прочность на разрыв порядка 7 ГПа и диаметр 1 -10 микрон. Использование этих волокон для упрочнения требует разработки ме­тодов равномерного распределения и ориентирования их в нужном направлении в материале. Волокно должно выдерживать условия, возникающие при обработ­ке. Важными параметрами, определяющими эффективность упрочнения компо­зита такими волокнами, являются прочность волокна на разрыв и отношение его длины к диаметру, а также способность волокна к деформированию в матрице. Из-за высокой прочности на разрыв и большого отношения длина/диаметр угле­родные нанотрубки должны оказаться очень хорошим материалом для упрочне­ния композитов. В этой области уже проведена некоторая предварительная рабо­та. Так, в исследовательском центре корпорации Дженерал Моторз, показано, что добавка 11,5 весовых процентов многослойных углеродных нанотрубок диа­метром 0,2 микрона к полипропилену приводит к удвоению его прочности на разрыв. Исследования в Токийском Университете показали, что добавление 5 объемных процентов нанотрубок к алюминию также увеличивает прочность ма­териала на разрыв вдвое по сравнению с так же обработанным алюминием, но без армирования. Композиты получали горячим прессованием и горячей экструзи­ей. Алюминиевая пудра и углеродные нанотрубки смешивались и нагревались до температур выше 800 К в вакууме и затем сжимались стальными штампами. По­сле этого из расплава экструзией получали стержни. Эта работа очень важна тем, что в ней показано — углеродные нанотрубки можно ввести в алюминий, и при последующей обработке они остаются химически устойчивыми. Исследователи полагают, что получая более однородное распределение и лучшее упорядочива­ние по направлениям углеродных нанотрубок в материале можно достичь суще­ственного увеличения прочности на разрыв. Теоретические оценки показывают, что при оптимальной доле трубок в материале около 10 объемных процентов его прочность на разрыв должна увеличиться в шесть раз.

Однако, возможность проскальзывания стенок одна относительно другой в многослойных нанотрубках и проскальзывания отдельных однослойных нано­трубок в пучке может уменьшить реально достижимые значения прочности. Атомно гладкие поверхности нанотрубок могут привести к их слабому сцепле­нию с упрочняемым материалом. С другой стороны, показано, что углеродные нанотрубки могут образовывать прочные связи с железом, являющимся основным компонентом стали. Это позволяет искать возможности увеличения прочности на разрыв сталей с помощью углеродных нанотрубок. На рис. 5.26 показаны ре­зультаты вычисления прочности стали на разрыв в зависимости от объемной доли однослойных углеродных нанот­рубок диаметром 10 нм и длиной 100 микрон по формуле, называемой урав­нением Келли-Тайсона. Эти вычисле­ния дают увеличение прочности стали в семь раз при 30-процентном содер­жании ориентированных углеродных нанотрубок. Несмотря на то, что все эти результаты выглядят очень много­обещающими, предстоит сделать еще очень многое, особенно в области раз­работки методов введения нанотрубок в металлы и пластики. Это конкретное применение, как и некоторые другие из обсуждаемых выше, очевидно тре­бует масштабного недорогого способа производства нанотрубок.

К-во Просмотров: 144
Бесплатно скачать Реферат: Методы получения нанотрубок