Реферат: Методы предварительных эквивалентных преобразований и итерационные методы с минимизацией невязки для решения СЛАУ

1.2 Ортогональные преобразования отражением

Следующей важной унитарной матрицей, с помощью которой в различных алгоритмах выполняются ортогональные преобразования, являются матрицы отражения. Использование этого инструмента позволяет, например, последовательными эквивалентными преобразова-ниями свести исходную матрицу к верхней треугольной (QR-алгоритмы), трех или двух диагональным и т.д.

Смысл этого подхода состоит в том, чтобы умножением матрицы A слева на специально подобранную унитарную матрицу один из столбцов исходной матрицы (например, ) преобразовать в вектор, параллельный единичному координатному вектору (или ). Тогда, последовательно подбирая нужные унитарные матрицы и соответствующие единичные векторы , после n циклов эквивалентных преобразований можно будет получить верхнюю треугольную матрицу:


При выборе в качестве начального вектора и умножениях матрицы A на ортогональные матрицы справа в конечном счете можно получить нижнюю треугольную матрицу.

Весь вопрос состоит в том, как формировать унитарную матрицу с заданными свойствами из векторов и столбцов матрицы A .

Из аналитической геометрии известно, что любые векторы, лежащие в плоскости, взаимно перпендикулярны с ее нормалью, т.е. их проекции на нормаль равны нулю. Последнее эквивалентно равенству нулю скалярных произведений.

Чтобы (k+ 1) – мерный векторный треугольник сделать параллельным k- мерной гиперплоскости с нормалью n (вектор единичной длины, перпендикулярный плоскости), необходимо приравнять нулю скалярное произведение: (n , y )=0.

Пусть вектор z не параллелен плоскости, заданной своей нормалью, тогда его проекции на эту плоскость и нормаль соответственно будут представлены векторами и . Вектор z и вектор зеркально-симметричный ему через эти проекции можно выразить так:

Разрешив первое относительно и подставив его в , получим


Проекцию вектора можно заменить скалярным произведением (n , z ) и подставить в выражение для , выразив тем самым зеркально отраженный вектор через исходный вектор и нормаль гиперплоскости:

Здесь M представляет унитарную матрицу, преобразующую произвольный вектор в зеркально отраженный. В том, что матрица унитарная, нетрудно убедиться, проверив ее произведение со своей комплексно сопряженной:

Выражение для зеркально отраженного вектора позволяет представить нормальный вектор в виде линейной функции от задаваемого вектора z :

Число в знаменателе является нормирующим множителем. Нормальный вектор представляющий гиперплоскость обязан иметь единичную длину. Коэффициент , который в общем случае является комплексным числом, необходимо выбрать так, чтобы скалярное произведение было больше нуля. Если учесть соотношение для согласованных норм: , то


Выбрав для комплексных матриц или – для действительных матриц, будем иметь

Такое нормирование не нарушает коллинеарности отраженного и единичного векторов:

Рассмотрим пример воздействия ортогонального преобразования на матрицу

.


К-во Просмотров: 196
Бесплатно скачать Реферат: Методы предварительных эквивалентных преобразований и итерационные методы с минимизацией невязки для решения СЛАУ