Реферат: Методы преобразования комплексного чертежа
План
1. Общие сведения.
2. Замена плоскостей проекций.
3. Вращение вокруг оси, перпендикулярной плоскости проекций.
4. Плоскопараллельное движение.
1. Общие сведения
Проецируемая фигура может занимать по отношению к плоскости проекции удобное (рациональное) и неудобное (нерациональное) положение.
Количество и характер геометрических построений при графическом решении задач определяется не только сложностью самой задачи, но и зависят от рационального или нерационального расположения фигуры относительно плоскости проекций.
Наиболее рациональные частные положения фигуры:
- положение, перпендикулярное к плоскости проекций;
- положение параллельное плоскости проекций.
При общем положении фигуры, она проецируется на плоскость проекций в искаженном виде.
Методы преобразования комплексного чертежа применяются для приведения фигуры общего положения в частное положение, наиболее выгодное для решения задач.
Четыре основные задачи, решаемые методами преобразования
1. Прямую общего положения преобразовать в прямую уровня.
2. Прямую общего положения преобразовать в проецирующую прямую.
3. Плоскость общего положения преобразовать в проецирующую плоскость.
4. Плоскость общего положения преобразовать в плоскость уровня.
Достигается это:
а) введением дополнительных плоскостей проекций так, чтобы прямая линия или плоская фигура, не меняя своего положения в пространстве, оказалась в частном положении в новой системе плоскостей проекций (способ перемены плоскостей проекций);
б) изменением положения прямой линии или какой-либо фигуры путем поворота вокруг некоторой оси так, чтобы прямая или фигура оказалась в частном положении относительно неизменной системы плоскостей проекций (способ вращения и плоскопараллельного перемещения).
2. Замена плоскостей проекций
Сущность способа замены плоскостей проекций заключается в том, что при неизменном положении объекта в пространстве производится замена данной системы плоскостей проекций новой системой взаимно перпендикулярных плоскостей проекций (рис. 75).
При переходе к новой системе одну из плоскостей проекций заменяют новой таким образом, чтобы данный геометрический элемент (прямая, плоскость) занял частное положение и проецировался без искажения.
Рис. 75
При решении ряда задач, например, требуется преобразовать прямую общего положения в прямую уровня, а затем — в проецирующую, выполнив при этом последовательно два преобразования.
Рассмотрим ход решения задач.
РЕШЕНИЕ I ОСНОВНОЙ ЗАДАЧИ. Для того, чтобы прямая АВ стала линией уровня (рис. 76, а), следует ввести новую плоскость проекций и расположить ее параллельно данной прямой. При этом новая ось x 1 будет параллельна одной из проекций прямой. Проведем ось параллельно горизонтальной проекции АВ . Новая плоскость проекций V1 расположится параллельно прямой АВ , которая проецируется на эту плоскость в истинную величину* .
Правило: при замене плоскостей проекций расстояние от новой проекции точки до новой оси равно расстоянию от заменяемой проекции точки до старой оси проекций.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--