Реферат: Методы прогнозирования финансовых показателей
-764,75
3 кв. 2001 г.
30159
30468,75
-309,75
4 кв. 2001 г.
33149
33798,75
-649,75
1 кв. 2002 г.
32451
32540,75
-89,75
Находим среднеквадратическую ошибку модели (Е) по формуле:
Е= Σ О2 : Σ (T+S)2
где:
Т - трендовое значение объёма расходов;
S – сезонная компонента;
О - отклонения модели от фактических значений
Е=(3079106/(361151*361151))*100% = 0,002361%
Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, т.е. она вполне отражает экономические тенденции, определяющие объём расходов, и является предпосылкой для построения прогнозов высокого качества.
2. Модель с мультипликативной компонентой.
В некоторых временных рядах значение сезонной компоненты не является константой, а представляет собой определенную долю -фондового значения, т.e. значение сезонной компоненты увеличивается с возрастанием значений тренда. Например, рассмотрим график следующих данных об объемах расходов. Объем продаж этого продукта так же, как и в предыдущем примере, подвержен сезонным колебаниям, и значения его в разные кварталы разные. Однако размах вариации фактических значении относительно линии тренда постоянно возрастает. Такую ситуацию можно представить с помощью модели с мультипликативной компонентой
A=T*S*Е
1.3.1. Расчет сезонной компоненты
Отличие расчета сезонной компоненты для мультипликативной модели от аддитивной модели заключается лишь в том, что в колонку 6 вписываются коэффициенты сезонности (аналог оценок сезонной компоненты в аддитивной модели)
Сезонные коэффициенты представляют собой доли тренда, поэтому принимают, что их сумма должна равняться количеству сезонов в году, т.е. 4, а не нулю, как в аддитивной модели.
Итого за 4 квартала |
Скользящая средняя за 4 квартала |
Центрированная скользящая средняя |
Оценка сезонной компоненты |
Y |
К-во Просмотров: 872
Бесплатно скачать Реферат: Методы прогнозирования финансовых показателей
|