Реферат: Многочастотные РЛС
Радиолокацией называется совокупность методов и технических средств, предназначенных для обнаружения различных объектов в пространстве, измерения их координат и параметров движения посредством приема и анализа электромагнитных волн, излучаемых или переизлучаемых объектами.
Радиолокация как научно-техническое направление в радиотехнике зародилась в 30-х годах. Достижения авиационной техники обусловили необходимость разработки новых средств обнаружения самолетов, обладающих высокими характеристиками (дальностью, точностью). Такими средствами оказались радиолокационные системы.
Получение информации в радиолокации сопряжено с наблюдением некоторой области пространства. Технические средства, с помощью которых ведется радиолокационное наблюдение, называются радиолокационными станциями (РЛС) или радиолокаторами; а наблюдаемые объекты — радиолокационными целями. Типичными целями являются самолеты, ракеты, корабли, наземные инженерные сооружения и т. п.
Системы радиолокации практически всегда входит в состав более сложных суперсистем. Эти суперсистемы имеют важное военное и народнохозяйственное значение и находят разнообразное применение: для управления воздушным движением, в навигации самолетов, кораблей, в геофизических и астрофизических исследованиях и др.
Системы радиолокации составляют информационную часть таких суперсистем и функционируют совместно и во взаимной связи с другими подсистемами суперсистемы (радионавигации, радиоуправления, передачи информации).
1. Формирование многочастотного сигнала
Многочастотный сигнал представляет собой совокупность нескольких сигналов с различными несущими частотами и одинаковыми или разными законами модуляции.
Принципиально возможно формирование многочастотного сигнала излучением нескольких сигналов с различными несущими частотами одновременно или со смещением во времени за счет быстрой перестройки несущей частоты зондирующего сигнала по определенному закону.
Одновременное излучение сигналов с различными несущими частотами может быть осуществлено несколькими способами. Наиболее простым из них является способ, при котором многочастотный сигнал формируется группой передатчиков с различными несущими частотами. В таких многочастотных РЛС непрерывного излучения, как правило, каждый передатчик работает на отдельную передающую антенну, а каждый приемник подключен соответственно к отдельной приемной антенне. Такая схема передающего тракта характерна для многочастотных РЛС непрерывного излучения, например доплеровских РЛС обнаружения низколетящих целей.
Одновременное излучение сигналов с различными несущими частотами может быть обеспечено при использовании в передающем устройстве в качестве задающего генератора многочастотного автогенератора.
Различают три основных типа многочастотных автогенераторов: с использованием гармоник основной частоты; с произвольным соотношением собственных частот контуров; с запаздывающей обратной связью. Кроме этого, возможны многочастотные автогенераторы, представляющие собой различные комбинации указанных выше основных типов.
Особый интерес с точки зрения использования многочастотных сигналов в радиолокации представляет третий тип многочастотных автогенераторов — с запаздывающей обратной связью, генерирующих колебания со спектром частот вокруг основной частоты.
В дециметровом и сантиметровом диапазонах волн такие многочастотные автогенераторы могут быть созданы на лампах бегущей или обратной волны с внутренней (через замедляющую систему) или внешней обратной связью.
Для получения устойчивых гармонических колебаний в любом автогенераторе должны выполняться условия баланса амплитуд и фаз. Применительно к лампам бегущей волны (ЛБВ) с внутренней обратной связью условие баланса амплитуд состоит в том, что существующие в стационарном режиме колебания должны компенсировать потери энергии в нагрузке и в замедляющей системе, а условие баланса фаз — в том, что для частот генерируемых колебаний в замкнутой цепи прямой и обратной связи должно укладываться целое число волн.
В математической форме это условие может быть представлено соотношением
где vП — фазовая скорость прямой волны; v0 — фазовая скорость отраженной волны; w — частота генерируемых колебаний; L — суммарная эквивалентная длина коаксиальных переходов на входе и выходе ЛБВ; l —длина спирали замедляющей системы.
Из соотношения ( 1) видно, что в ЛБВ с внутренней обратной связью принципиально существуют условия для одновременной генерации колебаний нескольких частот.
Многочастотность ЛБВ с внутренней обратной связью может быть пояснена также графически (рис. 7) путем сопоставления зависимости условия баланса фаз от частоты генерируемых колебаний с дисперсионной характеристикой замедляющей системы ЛБВ — v(w). Учитывая, что фазовые скорости прямой и отраженной волн практически одинаковы (vП = v0 = v) и намного меньше скорости света, а эквивалентная длина коаксиальных переходов на входе и выходе ЛБВ незначительна по сравнению с длиной спирали замедляющей системы (L<<l ), зависимость условия баланса фаз от частоты генерируемых колебаний для разных п с достаточной степенью точности графически может быть представлена наклонными прямыми
Рис. 7. Дисперсионная характеристика ЛБВ с внутренней ОС
Еще одним из способов одновременного формирования сигналов с различными несущими частотами может являться синтезирование частот. В многочастотных передающих устройствах находит применение пассивный метод синтезирования частот, основанный на использовании только генераторов гармоник, смесителей и фильтров.
Реализация любого из рассмотренных выше способов одновременного формирования многочастотного сигнала сопряжена с рядом особенностей, связанных с усложнением схемы передающего тракта, исключением взаимного влияния сигналов различных частот, одновременным усилением сигналов в широком диапазоне частот, увеличением габаритов и веса РЛС.
Следует также иметь в виду, что при наличии в тракте передачи элементов, общих для сигналов всех частот, одновременное формирование многочастотного сигнала оказывается энергетически невыгодным, так как мощность каждого из составляющих сигналов в среднем не может быть больше величины отношения предельно допустимой передаваемой мощности к числу несущих частот.
2. Многочастотная радиолокация целей
Отрицательное влияние флюктуации отраженных сигналов на характеристики РЛС может быть устранено или, по крайней мере, уменьшено, если удастся каким-либо образом добиться их сглаживания. Одним из способов сглаживания флюктуации является применение многочастотных сигналов. Физическая сущность эффекта сглаживания флюктуации отраженного сигнала при облучении цели многочастотным сигналом состоит в том, что при достаточно большом разносе несущих частот ширина лепестков диаграмм вторичного излучения цели на различных частотах неодинакова, а соответствующие экстремальные точки диаграмм оказываются сдвинутыми друг относительно друга, благодаря чему уменьшается изрезанность эквивалентной диаграммы вторичного излучения цели и соответственно относительная величина флюктуации отраженного сигнала. При этом наибольший эффект сглаживания флюктуации достигается при статистической независимости отраженных от цели сигналов на каждой из составляющих частот [3].
При многочастотном сигнале уже недостаточно рассматривать функции автокорреляции каждой из его частотных составляющих, а необходимо ввести также функцию их взаимной корреляции
Необходимым (но не достаточным) условием независимости отраженных сигналов является ортогональность соответствующих составляющих зондирующего сигнала [4]. Из ( 2) видно, что эта ортогональность не может быть обеспечена подбором законов модуляции, так как преобразование Фурье функции Сjk (t,wj -wk +Wjk ) является произведением спектров модуляции j-го и k-го сигналов, один из которых сдвинут по частоте на величину wj -wk +Wjk , так что требуемое равенство нулю этой функции при j¹k достигается лишь при неперекрывании указанных спектров, т. е. При достаточно большой величине ½wj -wk ½.
Функцию корреляции при многочастотном излучении можно преобразовать к виду
где r(t1 -t2 ) – коэффициент флюктуаций; wд j – доплеровский сдвиг j-й несущей частоты; Аj – амплитуда j-го отраженного сигнала; rjk - оределяет степень коррелированности j–го и k–го сигналов.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--