Реферат: Множества Операции над множествами
1) Пусть А={2; 5; 7}, В={3; 5; 6}. Тогда А В ={2; 3; 5; 6; 7}.
2) Пусть А=[-1/4; 2], В=[ -2/3; 7/4]. Тогда А В=[-2/3; 2] .
3) Пусть А= {х | х=8k, k Z}, B={x | x=8n-4, n Z}. Тогда A B ={x | 4m, mZ}.
Операция объединения множеств может проводиться не только над двумя множествами. Определение объединения множеств можно распространить на случай любого количества множеств и даже – на систему множеств. Система множеств определяется так: если каждому элементу α множества М отвечает множество Аα , то совокупность всех таких множеств мы будем называть системой множеств.
Объединением системы множеств {Аα } называется множество , состоящее из всех элементов, принадлежащих хотя бы одному из множеств Аα . При этом общие элементы нескольких множеств не различаются.
Таким образом, элемент х тогда и только тогда, когда найдется такой индекс α 0 М, что х A α0 .
В случае, когда М конечно и состоит из чисел 1, 2, … , n, применяется запись Если M=N, то имеем объединение последовательности множеств .
Рассмотрим ещё один пример: пусть М=(1; 2) и для каждого α є М определим множество Аα =[0;α]; тогда = [0;2).
Из определения операции объединения непосредственно следует, что она коммутативна, т.е. А1 A2 = A2 А1 , и ассоциативна, т.е. (А1 A2 ) А3 = А1 (A2 А3 ).
Пересечение множеств
Пересечением А ∩ В множеств А и В называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из множеств А и В.
Символическая запись этого определения: А ∩ В={х | х А и х В}.
Поясним определение пересечения множеств с помощью диаграммы Эйлера-Венна:
А ∩ В
На диаграмме пересечение множеств А и В выделено штриховкой.
Если множество А задается характеристическим свойством Р(х), a множество В-свойством Q(х), то в А ∩ В входят элементы, одновременно обладающие и свойством Р(х), и свойством Q(х).
Примеры пересечений двух множеств:
1) Пусть А={2; 5; 7; 8}, В={3; 5; 6; 7} .Тогда А ∩ В={5; 7}.
2) Пусть А=[-1/4; 7/4], В=[-2/3; 3/2]. Тогда А ∩ В= [-1/4; 3/2].
3) Пусть А= {х | х=2k, k є Z}, B={x | x=3n, n є Z}. Тогда А ∩ В ={x | x=6m, m Z}.
4) Пусть А- множество всех прямоугольников, В-множество всех ромбов. Тогда А ∩ В -множество фигур, одновременно являющихся и прямоугольниками, и ромбами, т.е. множество всех квадратов.
Операцию пересечения можно определить и для произвольной системы множеств {Аα }, где α М. Пересечением системы множеств {Аα }, называется множество , состоящее из всех элементов, принадлежащих одновременно каждому из множеств Аα , α М, т.е. = {x | x Аα для каждого α М}.
В случае, когда М конечно и состоит из чисел 1, 2, … , n, применяется запись . Если M=N, то имеем пересечение последовательности множеств .
В рассмотренном выше примере системы множеств Аα =[0; α], αМ =(1; 2) получим:=[0;1].
Операция пересечения множеств, как и операция объединения, очевидно, коммутативна и ассоциативна, т.е. А1 ∩A2 = A2 ∩А1 и (А1 ∩A2 )∩ А3 = А1 ∩(A2 ∩ А3 ).
Разность множеств
Разностью А\В множеств А и В называется множество, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е.