Реферат: Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями

заметим, что регулярна в верхней полуплоскости, а регулярна в нижней полуплоскости. Функции в соотношениях (16) обладают свойствами регулярности, о которых говорилось здесь, поэтому коэффициенты разложений по формулам (14) не являются произвольными, а их нужно определять таким образом, чтобы исключить полюса в каждой полуплоскости. После выполнения необходимых преобразований коэффициенты могут быть заданы в следующем виде:

(20)

Если допустить иные разложения, чем задаваемые формулами (14), то сохранение описанных здесь свойств регулярности становится невозможным. Таким образом ясно, что способ разложения по формулам (14) оказывается достаточным для рассматриваемой задачи.

УРАВНЕНИЯ ВИННЕРА-ХОПФА

В предыдущем разделе было установлено, что используя только Фурье-компоненты рассеянной волны (конкретно, ) на граничной плоскости | y |=b , можно представить Фурье-компоненты рассеянной волны в каждой из областей () таким образом, чтобы удовлетворялись граничные условия (В1), (В2), (В3). Таким образом, если в конечном счете удастся отыскать эти неизвестные Фурье-компоненты так, чтобы удовлетворить граничному условию (В4), то тем самым поставленная задача будет решена. Как следует из уравнений (3), граничное условие (В4) можно свести к непрерывности производной при | y |=b . Если записать это требование, используя формулы (9) и (16), то окончательный результат после выполнения необходимых преобразований, учитывающих свойства четности Фурье-компонент, может быть записан в следующем виде (q = c , s ):

(21)

Здесь кернфункции (ядра)задаются следующими формулами:

(21)

(22)

Уравнения (21) по существу представляют собой систему уравнений Винера-Хопфа. Этот факт становится еще более очевидным, если применить преобразования по приводимым ниже формулам. А именно, если умножить эти уравнения на или , выполнить преобразования с использованием соотношений (19), то можно получить два следующих соотношения:

(24)

При этом имеют место следующие соотношения:

(25)

(26)

Тот факт, что правые части в формулах (24), а в конечном счете, правые части в формулах (26), являются регулярными в верхней полуплоскости (области U ) или в нижней полуплоскости (области L ), можно установить следующим образом. Ясно, что с первого взгляда можно заключить, что особенностью функции являются только полюса в L . Однако, эти полюса исключаются в силу соотношений, представляемых формулой (20), так что эта функция оказывается регулярной в нижней полуплоскости. Аналогично, функция является регулярной в верхней полуплоскости.

Что касается системы уравнений Винера-Хопфа, представленной формулой (24), то ее решение можно найти, выполняя интегрирование вдоль разрезов от точек ветвления в разложениях керн-функций на множители. При выполнении расчетов возникают определенные затруднения, однако вывод решений проводится автоматически. Сначала выполняем разложение керн-функций на частное (произведение) функций, регулярных в верхней полуплоскости и в нижней полуплоскости, и, сверх того, не имеющих нулей (j =0, 1, q = c , s ):

(27)

Затем, делим (умножаем) правые части и левые части уравнений (24) на эти функции разложения, исключаем их полюса и выполняем интегрирование вдоль разрезов от точек ветвления. Если выполнить описанные действия, то обе части уравнений (24) можно разложить таким образом, что они окажутся регулярными соответственно в верхней полуплоскости (область U ) или в нижней полуплоскости (область L ). Более того, полученные соотношения окажутся справедливыми в общей области Д. Следовательно, по теореме Лиувилля обе части вместе оказываются функциями, регулярными во всей плоскости, т.е. постоянными. Однако, эти постоянные в силу граничного условия (В5) концевой точки, оказываются равными нулю, так что решение уравнений (24) определяется единственным образом. Здесь в качестве граничного условия концевой точки принимается условие - const при | x | ®a , | yb . Окончательный результат представляется в следующем виде:

(28) Здесь выражаются через интегралы вдоль разрезов от точек ветвления (рис. 3, 4). А именно, если считать, что функция регулярна в точках пути интегрирования то тогда определяются по формулам:

(29)

Наконец, обозначают нули керн-функций, а Res - вычет.

Рис.3. Путь интегрирования

Рис.4. Путь интегрирования

Далее

(30)

N представляет собой число нулей в нижней полуплоскости. Эти нули соответствуют собственным значениям плоской волны вдоль пластины из диэлектрика с потерями толщины 2b, если интерпретировать их с физической точки зрения.

Формулы (28) представляют формальное решение на основании точного исследования. Если в этом решении перейти к пределу то а будет совпадать с решением для идеального проводника (подробности доказательства опускаются).

ПРИБЛИЖЕННЫЕ РЕШЕНИЯ

Рассмотрим приближенные решения для случая, когда в среде имеются потери, а ширина прямоугольного цилиндра велика по сравнению с длиной волны. Если считать, что в диэлектрике имеются потери, а ширина прямоугольного цилиндра 2а мала, то можем положить:

(31)

Если выполнять расчеты для бетона , используя полученные к настоящему времени данные на основании экспериментальных результатов, то даже в диапазоне ультравысоких частот при ширине в одну длину волны абсолютные величины в (31) ниже . Отсюда следует, что можно пренебречь экспоненциальными членами в соотношениях (20) и членами, связанными с плоской волной, в соотношениях (28), если ширина 2а больше длины волны. Это означает, что почти можно пренебречь взаимодействием рассеянных волн на обеих торцевых плоскостях (x = a и x = - a ), обусловленных электромагнитной волной, распространяющейся в среде с потерями, и плоской волной, возбужденной в пластине из диэлектрика с потерями, поскольку затухание вследствие потерь велико. Кроме того, функциональные величины необходимо определять алгебраически посредством подстановки в формулы (28), но и в этом случае можно пренебречь всеми экспоненциальными членами. Следовательно, выполнение расчетов в среде с потерями, в качестве которой предполагается бетон, значительно упрощается.

К-во Просмотров: 612
Бесплатно скачать Реферат: Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями