Реферат: Модели классификации на основе использования нейронных сетей

Выполнила: Студентка ф-та МЭО

5 к. 8 гр.

Лисицына И. И.

Проверил: к.т.н., доц. Милов А. В.

ХАРЬКОВ — 2010

Цель работ ы : построить модель классификации банков России и, используя модуль Statistica Neural Networks ППП Statistica, провести распознавание для выборочных данных.

Внесем зависимые и независимые переменные модели. В нашем случае зависимой переменной является переменная BAD (переменная, характеризующая устойчивость банка. 1-, если банк лопнул, 0 - банк устойчивый). Все остальные – независимые.

Далее определяем обучающий, тестирующий и верифицирующий набор.

После этого в тестовой выборке проверяем построенную сеть или сети, (если несколько). Если сеть прошла проверку, ее можно использовать для последующего анализа данных, делать прогноз и проводить классификацию.

Мастер решения задач делит всю выборку на три части: тестовую (красный цвет), контрольную или верифицирующую (синий), обучающую (чёрный цвет).

Из рисунка выше заметно, что значения кое-где стали серого цвета. Это значит, что в группу значимых эти переменные не вошли.

Результаты построения модели представлены на рис. 1. Оценка качества классификации (0,9444) показывает, что коэффициент корреляции стремится к единице, что говорит о том, что качество модели высокое.

Рис 1. Окно сообщений

Получили следующую нейронную сеть (рис. 2)

Рис 2. Архитектура сети

Исходя полученной архитектуры сети можно сказать, что количество входов совпадает с количеством значимых переменных, т.е. оно равно 15.

Эти переменные следующие:

· AGE (возраст банка в годах);

· ARREAR (средства на карточных счетах);

· ASSETS (чистые активы банка);

· BANK (привлеченные средства других банков);

· CARITAL (капитал);

· CURRENCY (валютные резервы);

· EQUITY (средства, влож. в недвижимость);

· GOVLIAB (об-ва перед государством);

· LIQUID (ликвидные активы);

· OVERNIGH (об-ва до востребования);

· PERF (рисковые активы);

· PROTECT (защита капитала);

· RETAIL (средства частных лиц);

· TOTLIAB (суммарные об-ва);

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 178
Бесплатно скачать Реферат: Модели классификации на основе использования нейронных сетей