Реферат: Модели классификации на основе использования нейронных сетей
Выполнила: Студентка ф-та МЭО
5 к. 8 гр.
Лисицына И. И.
Проверил: к.т.н., доц. Милов А. В.
ХАРЬКОВ — 2010
Цель работ ы : построить модель классификации банков России и, используя модуль Statistica Neural Networks ППП Statistica, провести распознавание для выборочных данных.
Внесем зависимые и независимые переменные модели. В нашем случае зависимой переменной является переменная BAD (переменная, характеризующая устойчивость банка. 1-, если банк лопнул, 0 - банк устойчивый). Все остальные – независимые.
Далее определяем обучающий, тестирующий и верифицирующий набор.
После этого в тестовой выборке проверяем построенную сеть или сети, (если несколько). Если сеть прошла проверку, ее можно использовать для последующего анализа данных, делать прогноз и проводить классификацию.
Мастер решения задач делит всю выборку на три части: тестовую (красный цвет), контрольную или верифицирующую (синий), обучающую (чёрный цвет).
Из рисунка выше заметно, что значения кое-где стали серого цвета. Это значит, что в группу значимых эти переменные не вошли.
Результаты построения модели представлены на рис. 1. Оценка качества классификации (0,9444) показывает, что коэффициент корреляции стремится к единице, что говорит о том, что качество модели высокое.
Рис 1. Окно сообщений
Получили следующую нейронную сеть (рис. 2)
Рис 2. Архитектура сети
Исходя полученной архитектуры сети можно сказать, что количество входов совпадает с количеством значимых переменных, т.е. оно равно 15.
Эти переменные следующие:
· AGE (возраст банка в годах);
· ARREAR (средства на карточных счетах);
· ASSETS (чистые активы банка);
· BANK (привлеченные средства других банков);
· CARITAL (капитал);
· CURRENCY (валютные резервы);
· EQUITY (средства, влож. в недвижимость);
· GOVLIAB (об-ва перед государством);
· LIQUID (ликвидные активы);
· OVERNIGH (об-ва до востребования);
· PERF (рисковые активы);
· PROTECT (защита капитала);
· RETAIL (средства частных лиц);
· TOTLIAB (суммарные об-ва);
--> ЧИТАТЬ ПОЛНОСТЬЮ <--