Реферат: Модели классификации на основе использования нейронных сетей
Примечательно, что в ходе построения модели были исключены как незначимые такие переменные, как PROFIT (прибыль/убыток), CITY (город), и расчетные переменные PROT_CAP, EQ_PERF, OV_LIQ).
На данном рисунке представлены результаты расчетов в ходе построения сети.
В столбце Type указывается тип сетей: Linean – линейный, MLP – многослойный персептрон.
Столбец Error показывает ошибку сети, которая рассчитывается для всех контрольных наблюдений. Чем меньше показатель ошибки, тем надежнее качество сети.
Столбец Inputs отображает число входящих сменных, используемых нейронной сетью.
Hidden указывает число скрытых элементов сети.
Performance указывается качество сети, которое определяется по контрольному произведению.
Для нашей задачи классификации качество – это доля правильно классифицированных наблюдений.
Далее, открываем окно Run One - off Case , где рассмотрим возможности работы со структурой.
В данном окне отображаются 2 таблицы.
В ячейки первой вводим различные значения коэффициентов банка. При этом, в другой таблице при нажатии кнопки Run появится результат. Его значение приближено к номеру класса банка.
В нашем случае мы получили значение 0,1965409. Оно близко к 0. Следовательно, банк с прогнозируемыми значениями относится к классу 0, т.е. является устойчивым.
Ниже представлены общие данные проведенного анализа.