Реферат: Моделі мультиграничної сегментації зображень

– введення і дослідження операцій на класах еквівалентностей або толерантностей для перетворень результатів сегментації для отримання областей зображень, що інтерпретуються;

– дослідження специфіки реалізації та застосування мультиграничної сегментації, створення і впровадження дослідницьких та спеціалізованих програмних засобів.

Об’єкт дослідження – процеси обробки візуальної інформації для контекстної інтерпретації в системах технічного зору.

Предмет дослідження – моделімультиграничноїсегментації візуальної інформації для контекстної інтерпретації в системах технічного зору.

Методи дослідження – при розробці та дослідженні моделей сегментації зображень було використано математичний апарат розпізнавання образів, теорії множин та алгебри, елементи статистичного аналізу.

Наукова новизна отриманих результатів. Наукова новизна дисертації полягає у постановці та розв’язанні задачі обробки зображень для предметно-орієнтованої інтерпретації. При розв’язанні здійснюється мультигранична сегментація та контекстні перетворення класів еквівалентності або толерантності:

– отримали подальший розвиток методи сегментації зображень, які, на відміну від відомих, використовують додаткові просторові дані, що забезпечує підвищення адекватності тематичної інтерпретації;

– вперше запропоновано моделі, які, на відміну від існуючих моделей граничної сегментації, пов’язують розбиття (покриття) діапазону зміни яскравості (ознак) і розбиття (покриття) поля зору, що створює передумови для інтелектуального аналізу зображення;

– отримали подальший розвиток методи перетворень розбиттів і покриттів зображень, які, на відміну від відомих, враховують характеристики форми областей або їх множин, що приводить до підвищення валідності процедур вторинної сегментації візуальної інформації.

Практичне значення отриманих результатів. Розроблені в дисертаційній роботі моделі мультиграничної сегментації зображень, що засновані на аналізі зв’язку розбиття та покриття поля зору та області значень даних із використанням їх перетворень для пошуку раціонального прикладного трактування, можуть бути застосовані для вирішення широкого кола завдань інтерпретації зображень. Використання отриманих результатів забезпечило досить стійку автоматичну сегментацію зображень та створило передумови для оцінки подібності зображень за результатами сегментації, що дозволяє враховувати надмірність або дефіцит інформації разом з її багатозначністю на етапі тематичної інтерпретації. Синтезовані методи підтвердили свою ефективність при створенні систем медичної діагностики, зокрема в Харківському державному медичному університеті (акт про впровадження від 15.09 2007 р.), в Дорожній клінічній лікарні ст. Харків (акт про впровадження від 19.09 2007 р). Також наукові положення, висновки і рекомендації, викладені в дисертації, були використані в навчальному процесі Харківського національного університету радіоелектроніки (акт про впровадження від 24.10 2007 р).

Особистий внесок здобувача. Усі основні результати, що виносяться на захист, отримані здобувачем особисто. У роботах, опублікованих зі співавторами, здобувачу належать: у [2] – запропоновані й досліджені моделі часткової сегментації на базі зв’язку розбиттів (покриттів) областей визначення і значень даних; у [3] – проведено оцінку ефективності застосування існуючих методів сегментації для виділення областей інтересу на різних класах зображень; у [4] – формалізовані та вивчені властивості толерантностей у задачах сегментації зображень; у [5] – введенні трансформації перерізів зображень, які є класами еквівалентностей або толерантностей; у [9] – запропоноване врахування ознак форми, яке забезпечує можливості інтерпретації перетворень результатів сегментації.

Апробація результатів дисертації.Основні результати роботи були висвітлені, обговорені і схвалені на таких науково-технічних конференціях: 10-й Міжнародний молодіжний форум “Радіоелектроніка і молодь у XXI столітті” (м. Харків, 10-12 квітня 2006 р.); Перша міжнародна наукова конференція «Глобальні інформаційні системи. Проблеми і тенденції розвитку» (м. Харків, 3-6 жовтня 2006 р.); Х Міжнародна наукова конференція, присвячена пам’яті генерального конструктора ракетно-космічних систем, академіка М.Ф. Решетнєва (м. Красноярськ, 8-10 листопада 2006 р.); Міжнародна наукова конференція «Сучасні проблеми математики та її застосування в природних науках й інформаційних технологіях» (м. Харків, 23-25 березня 2007 р.); Міжнародна конференція «Інтелектуальні системи прийняття рішень і прикладні аспекти інформаційних технологій» (м. Євпаторія, 14-18 травня 2007 р.), International conference on computer vision and graphics (Warsaw, Poland, September 22-24, 2004); 4-th International Workshop Adaptive multimedia retrieval (Geneva, Switzerland, July 27-28, 2006).

Публікації. Основні результати дисертаційної роботи надруковано у 10 наукових працях, у тому числі 3 статті у виданнях, що входять до переліків, затверджених ВАК України, та 7 публікацій у збірниках праць міжнародних наукових конференцій.

Структура дисертації. Дисертація складається зі вступу, чотирьох розділів, висновків, списку використаних джерел та додатку. Повний обсяг дисертації становить 146сторінок; обсяг основного тексту 121 сторінка; 43 рисунка; 7 таблиць; список використаних джерел, що включає 139 найменувань та займає 15 сторінок; додаток на 5 сторінках.


основний зміст роботи

У вступі обґрунтовано актуальність теми, сформульовано мету та задачі дослідження, розкрито наукову та практичну цінність отриманих результатів. Наведено відомості про публікації та апробацію роботи.

У першому розділі проведено аналіз стану й тенденцій розвитку методів сегментації зображень, основною метою яких є виділення областей поля зору, що характеризує значущі об’єкти сцен, а у кінцевому результаті – перетворення растрової візуальної інформації в деяку семантичну конструкцію.

Встановлено, що підходи до сегментації можуть розглядатися з різних позицій – локальні й глобальні методи можуть класифікуватися як порогові просторові, спектральні, гістограмні, текстурні тощо. За математичними моделями, що використовуються, в залежності від виду й обсягу апріорної інформації алгоритми розділяються на детерміновані й статистичні, а в останній час активно розвиваються моделі, які враховують неадекватність і недостовірність інформації, яку отримують із зображення, її надмірність, і в той же час дефіцит, стосовно проблемно-орієнтованої області.

Показано, що сьогодні найбільш поширені: адаптовані алгоритми кластеризації; гістограмні методи; алгоритми на основі пошуку контурних препаратів; методи нарощування областей; алгоритми, які базуються на функціях рівня; методи побудови розбиття графів; різні модифікації перетворень водорозділів; методи, які базуються на моделях або навчаючих вибірках; алгоритми на основі штучних нейронних мереж та інтерактивні алгоритми розміток областей і, головне, всі їх існуючі комбінації. На основі аналізу переваг і недоліків зазначених методів і алгоритмів визначено, що, як і раніше, порогові (просте порогове обмеження, просторово-адаптивні пороги, інтервальні пороги, квазіпорогова обробка, мультиграничні алгоритми) методи можуть забезпечувати у низці прикладних задач потрібну якість сегментації. Методи порогової обробки, незважаючи на їхні недоліки, відіграють досить істотну роль у задачах сегментації зображень. Як першопричину потрібно вказати їхні інтуїтивно зрозумілі властивості та простоту обчислювальних моделей. Проте методи граничної обробки потребують свого розвитку в плані розробки моделей, які забезпечують у деякому розумінні універсальні підходи до аналізу просторів зображень або ознак.

Стосовно інтерактивної та автоматичної обробки візуальної інформації акцент переноситься на розв’язання задачі ліквідації семантичного конфлікту, тобто результати обробки зображень алгоритмів низького рівня, що орієнтовані на обробку зображень як двомірних полів, не завжди придатні для тематичної інтерпретації навіть у конкретних предметних областях. Для усунення цього недоліку необхідно вміти отримувати та трансформувати дані в прийнятну форму, зокрема находити компроміс між недостатньою та надмірною сегментацією. Таким чином, одним із напрямків, які мають теоретичний інтерес та практичну значущість, є моделювання півтонових та/або кольорових зображень на основі зв’язків покриттів (розбиттів) області значень та покриттів (розбиттів) носія.

На основі проведеного аналізу зроблено висновок щодо актуальності створення моделей сегментації на основі багаторівневого представлення зображень за допомогою бінарних відношень ліній рівня та вивчення операцій, які забезпечують адаптацію часткової мультиграничної сегментації до розв’язання задач синтаксичної, семантичної, якісної та кількісної інтерпретації зображень.

У другому розділі запропоновано нові мультиграничні моделі взаємозв’язку результатів сегментації з вихідним зображенням, в основу яких покладено систему відношень, що враховує подібність яскравісних характеристик (ознак). Властивості цих відношень забезпечують ефективну алгоритмізацію сегментації, що в кінцевому результаті надає достовірні дані для етапу інтелектуального аналізу зображень та дозволяє запропонувати нові методи, які враховують просторові властивості.

У полі зору відеодатчика (прямокутної фінітної області ) аналізуються цифрові форми подання зображень, тобто функція розподілу яскравості набуває тільки повнозначних числових значення у вузлах сітки розміру . Для спрощення запису (з урахуванням построкової розгортки) носій зображення представлений множиною , де . Тоді зображення при довільному законі квантування з рівнями визначається множиною

.

Розглянемо покриття діапазону значень , де , , , , , . Функція і покриття індукують на бінарне відношення, яке є відношенням толерантності.

(1)

де

З іншого боку, відношення реалізує багатозначні відображення з в , які продукують ліві та праві суміжні класи:

– клас образів елемента ;

– клас прообразів елемента .

К-во Просмотров: 228
Бесплатно скачать Реферат: Моделі мультиграничної сегментації зображень