Реферат: Модели стационарных временных рядов и их индефикация

В отличие от обычного МСС здесь скользит только правый конец интервала усреднения и, кроме того, веса экспоненциально уменьшаются по мере удаления в прошлое. Формула (2.11) дает оценку сглаженного значения временного ряда не в средней, а в правой конечной точке интервала усреднения.

2.3. Модели стационарных временных рядов и их идентификация.

В 2.2 рассматривался класс стационарных временных рядов, в рамках которого подбирается модель, пригодная для описания поведения случайных остатков исследуемого временного ряда (1). Здесь рассматривается набор линейных параметрических моделей из этого класса и методы их идентификации. Таким образом, речь здесь идет не о моделировании временных рядов, а о моделировании их случайных остатков t, получающихся после элиминирования из исходного временного ряда xt его неслучайной составляющей (2.8). Следовательно, в отличие от прогноза, основанного на регрессионной модели, игнорирующего значения случайных остатков, в прогнозе временных рядов существенно используется взаимозависимость и прогноз самих случайных остатков.

Введем обозначения. Так как здесь описывается поведение случайных остатков, то моделируемый временной ряд обозначим t, и будем полагать, что при всех t его математическое ожидание равно нулю, т.е. Et, 0. Временные последовательности, образующие «белый шум», обозначим t.

Описание и анализ, рассматриваемых ниже моделей, формулируется в терминах общего линейного процесса, представимого в виде взвешенной суммы настоящего и прошлых значений белого шума, а именно:

где 0 = 1

Таким образом, белый шум представляет собой серию импульсов, в широком классе реальных ситуаций генерирующих случайные остатки исследуемого временного ряда.

Временной ряд t можно представить в эквивалентном виде, при котором он получается в виде классической линейной модели множественной регрессии, в которой в качестве объясняющих переменных выступают его собственные значения во все прошлые моменты времени:

При этом весовые коэффициенты 1, 2,… связаны определенными условиями, обеспечивающими стационарность ряда t. Переход от (2.14) к (2.13) осуществляется с помощью последовательной подстановки в правую часть (2.14) вместо t1, t2,… их выражений, вычисленных в соответствии с (2.14) для моментов времени t 1, t 2 и т.д.

Рассмотрим также процесс смешанного типа, в котором присутствуют как авторегрессионные члены самого процесса, так и скользящее суммирование элементов белого шума:

Будем подразумевать, что p и q могут принимать и бесконечные значения, а также то, что в частных случаях некоторые (или даже все) коэффициенты или равны нулю.

2.3.1. Модели авторегрессии порядка p (AR(p)-модели).

Рассмотрим сначала простейшие частные случаи.

Модель авторегрессии 1-го порядка AR(1) (марковский процесс). Эта модель представляет собой простейший вариант авторегрессионного процесса типа (2.14), когда все коэффициенты кроме первого равны нулю. Соответственно, она может быть определена выражением

t = t1 + t, (2.15)

где некоторый числовой коэффициент, не превосходящий по абсолютной величине единицу (|| < 1), а t последовательность случайных величин, образующая белый шум. При этом t зависит от t и всех предшествующих , но не зависит от будущих значений . Соответственно, в уравнении (2.15) t не зависит от t1 и более ранних значений . В связи с этим, t называют инновацией (обновлением).

Последовательности , удовлетворяющие соотношению (2.15), часто называют также марковскими процессами. Это означает, что

Et 0, (2.16)

r(t, tk) = k, (2.17)

Dt = , (2.18)

cov(t, tk) = kDt. (2.19)

Одно важное следствие (2.19) состоит в том, что если величина || близка к единице, то дисперсия t будет намного больше дисперсии . А это значит, что если соседние значения ряда t сильно коррелированы, то ряд довольно слабых возмущений t будет порождать размашистые колебания остатков t.

Основные характеристики процесса авторегрессии 1-го порядка следующие.

Условие стационарности ряда (2.15) определяется требованием к коэффициенту : || < 1, или, что то же, корень z0 уравнения 1 z = 0 должен быть по абсолютной величине больше единицы.

Автокорреляционная функция марковского процесса определяется соотношением (2.17):

r() = r(t, t) = . (2.20)

Отсюда же, в частности, следует простая вероятностная интерпретация параметра : = r(t, t1), т.е. значение определяет величину корреляции между двумя соседними членами ряда t.

Из (2.20) видно, что степень тесноты корреляционной связи между членами последовательности (2.15) экспоненциально убывает по мере их взаимного удаления друг от друга во времени.

Частная автокорреляционная функция rчаст() = r(t, t+ | t+1 = t+2 =…= t+1 = 0) может быть подсчитана с помощью формул (2.4)-(2.5). Непосредственное вычисление по этим формулам дает следующий простой результат: значения частной корреляционной функции rчаст() равны нулю для всех = 2, 3,…. Это свойство может быть использовано при подборе модели: если вычисленные выборочные частные корреляции статистически незначимо отличаются от нуля при = 2, 3,…, то использование модели авторегрессии 1-го порядка для описания поведения случайных остатков временного ряда не противоречит исходным статистическим данным.

Спектральная плотность марковского процесса (2.15) может быть подсчитана с учетом известного вида автокорреляционной функции (2.20):

В случае значения параметра близкого к 1, соседние значения ряда t близки друг к другу по величине, автокорреляционная функция экспоненциально убывает оставаясь положительной, а в спектре преобладают низкие частоты, что означает достаточно большое среднее расстояние между пиками ряда t. При значении параметра близком к -1, ряд быстро осциллирует (в спектре преобладают высокие частоты), а график автокорреляционной функции экспоненциально спадает до нуля с попеременным изменением знака.

К-во Просмотров: 182
Бесплатно скачать Реферат: Модели стационарных временных рядов и их индефикация