Реферат: Моделирование системных элементов

(1)

Для обобщенной оценки внешних взаимосвязей и взаимодействий элемента

с окружающей его средой введем показатель "сцепленности" и определим его как композицию показателей и , т.е.

(2)

Полученные показатели прочности (1) и сцепленности (2) используем для оценки

целостности элемента . Такая оценка определяется отношением вида

(3)

т.е. как отношение прочности элемента к его сцепленности со средой .

С учетом (1) и (2) выражение (3) принимает вид

(4)

Уровни целостности элемента Анализ выражений (3) и (4) дает возможность ранжи-ровать элементы по уровням целостности и качественно определить их устойчи-вость по отношению к окружающей среде.

Случай 1. Если значение показателя прочности элемента превосходит значение показателя сцепленности элемента с его средой , т.е. > , а как следствие и > 1, то элемент по своим целостным свойствам устойчив. В рассматриваемом случае имеет место супераддитивная целостность.

Случай 2. Пусть значения показателей прочности и сцепленности равны,

т.е. = . В этом случае показатель целостности = 1. Тогда элемент по своим целостным свойствам находится на грани устойчивости. Такой уровень целостности элемента определим как аддитивная целостность.

Случай 3. Наконец, пусть значения показателя прочности элемента ниже значений показателя сцепленности элемента с его средой . В рассматриваемом случае условия записываются в виде < и < 1. При этом элемент по своим целостным свойствам не устойчив к интегральному вовлечению (растворению) в окружающей среде . Рассматриваемый уровень целостности элемента определим

как субаддитивная целостность.

Таким образом, введенный показатель может использоваться как критерий

оценки качества целостных свойств элемента , а также для сравнения раэличных элементов ( = 1, 2, ... , N) по критерию целостности.

2.4. Метод концептуального метамоделирования

Концептуальное метамоделирование ( КММ ) основано на использовании индуктивно-дедуктивного подхода. Создание КММ осуществляется на основе индуктивного подхода ( от конкретного к абстрактному, от частного к общему ) посредством обобщения, концептуализации и формализации.

Использование КММ предполагает переходы от общего к частному, от абстрактного к конкретному на основе интерпретаций.

КММ функционирования системного элемента предполагает описание динамики поведения на заданном уровне абстракции с точки зрения его взаимодействия с окружающей средой, т.е. внешнего поведения. Математическое описание такого элемента должно отражать последовательность причинно-следственных связей типа "вход - выход" с заданной временной направленностью из прошлого в будущее. КММ функционирования системного элемента должна учитывать базовые концепции и существенные факторы, к числу которых, в первую очередь, следует отнести следующие.

1. Элемент , как компонент системы , связан и взаимодействует с другими компонентами этой системы.

2. Компоненты системы воздействуют на элемент посредством входных сигналов, в общем случае, обозначаемых векторным множеством .

3. Элемент может выдавать в окружающую его среду выходные сигна-лы, обозначаемые векторным множеством .

4. Функционирование системного элемента ( ) происходит во времени с заданной временной направленностью от прошлого к будущему: где

5. Процесс функционирования элемента представляется в форме отображения входного векторного множества в выходное - , т.е. по схеме "вход - выход" и представляется записью вида

.

6. Структура и свойства отображения при моделировании на основе метода прямых аналогий определяется внутренними свойствами элемента , во всех остальных случаях - инвариантны и связаны феноменологически.

К-во Просмотров: 201
Бесплатно скачать Реферат: Моделирование системных элементов