Реферат: Модификация биологически активными системами синтетического полиизопрена
На первом этапе работы был выполнен качественный анализ по веществам, присутствие которых в латексе НК было достоверно установлено и строение которых достаточно достоверно доказано. В качестве таких веществ были выбраны: гидрофобный белок из латекса гевеи, растворимые белки серума того же латекса, лецитины разного происхождения, синтетические олигопренолфосфаты и пирофосфаты, а также гидрофобные белки и липидно-белковые смеси микробиологического и животного происхождения. Депротеинизацию торговых сортов НК (исходных, не подвергавшихся пластификации) проводили в разбавленных растворах (растворители – гексан, толуол) путем обработки активными добавками с последующим отделением белковой компоненты методом препаративного ультрицентрифугирования, затем депротеинизированный каучук выделяли сушкой под вакуумом в мягких условиях [40]. О содержании белка судили по определению азота с использованием прибора Кельдаля и анализу ИК-спектров.
Изомеризацию осуществляли в растворе толуола и в блоке путем обработки каучука оксидом серы, варьируя длительность и температуру. Об изменениях микроструктутры судили по появлению сигналов, соответствующих поглощению протонов trans – конфигурации звена изопренов в спектрах ЯМР, прибор Bruker – 500, ММР характеризовали методом ГПХ.
Кинетика кристаллизации является более медленной для фракции с низким содержанием белка по сравнению с нефракционированными образцами [41]. Однако основное влияние на кинетику статической кристаллизации (полупериод кристаллизации) оказывает не содержание белка, а содержание карбоновых кислот.
Изучение кристаллизации показало, что депротеинизированные образцы демонстрируют ориентационные эффекты при гораздо большем относительном удлинении (500 – 700 % ) вместо 200 – 300 %для исходных, однако температура плавления кристаллической фазы депротеинизированных образцов в опытах по статической кристаллизации при этом практически не изменяется и составляет Тпл = 10-12о С.
Кинетика кристаллизации образцов с меньшим содержанием белка является более медленной, однако увеличение содержания белка выше 2–3 % масс. почти не влияет в дальнейшем на кинетику кристаллизации.
3. Объекты исследования
Натуральный каучук
Натуральный каучук (НК) – биополимер изопреноидной природы, типичный представитель широкого класса изопреноидов растительного происхождения, он вырабатывается в растениях, произрастающих в разных регионах мира (бразильская гевея, американская гваюла, среднеазиатский кок-сагыз) [1], представляет собой на 98 – 100% стереорегулярный циз-полиизопрен. Технические характеристики использованного в данной работе натурального каучука представлены в таблице 3.1
Таблица 3.1
Технические характеристики НК RSS1
Загрязнённость, определённая на сите 45 мкм, %, не более | Начальная пластичность по Уоллесу, не менее | Показатель сохранения пластичности (ПСП), не менее | Содержание летучих веществ, %, не более | Содержание золы, %, не более |
0,5 | 33-47 тип 40 | 40 | 1,0 | 1,0 |
СКИ-3
Изопреновый каучук получают путем стереоспецифической полимеризации изопрена в растворе на катализаторах Циглера-Натта при температуре 30-
50 о С. Структура и химический состав:
Содержание цис-1,4-звеньев
транс-1,4 - 0-4%
Содержание Звеньев 1.2 и 3.4 в сумме 1-5%
Общая непредельность - 94-98%
Средневязкостная масса Мŋ – (350-1300)*103 . Физические свойства СКИ подобны свойствам НК. Изопреновый каучук кристаллизуется при -25о С. Наименьшее относительное удлинение, при котором наблюдается образование кристаллической фазы при 20о С, составляет 300-400%. Параметр растворимости δр равен 16.8 (МДж/М3 )1/2 [42]
Для изучения влияния биологически активных систем на комплекс свойств синтетических каучуков и резин на их основе были выбраны следующие продукты:
Липидный остаток биомассы Rhodobacter capsulatus
Из биомассы Rhodobacter сapsulatus (представитель аноксигенных фотосинтезирующих микроорганизмов) направленно получают бактериопурпурин для медицинских целей. Кроме того, биомасса Rhodobactercapsulatus может быть источником других ценных биологически активных соединений.
|
|
Биотехнологический способ получения бактериопурпурина позволяет получать это ценное вещество с выходом не превышающим 1% на сухую биомассу. При этом образуются липидные отходы, которые не используются и могут быть источниками ценных БАС, в частности, ВЖК (насыщенных и ненасыщенных).
После проведения качественного анализа липидного остатка, на основании сравнения хроматографической подвижности, составляющих его веществ с хроматографическими характкристиками стандартных образцов и с учетом литературных данных, был сделан вывод о составе липидного отхода биотехнологического процесса переработки биомассы Rhodobactercapsulatus.
Идентификацию компонентов в липидном остатке Rhodobactercapsulatus проводили на основании результатов ТСХ в сравнении со свидетелями (образцы свободных жирных кислот и ацилглицеридов, токоферола, фитола) и на основании литературных данных.
На хроматограмме обнаружили: каротиноидные углеводороды, токоферолы, кислотосодержащие каротиноиды, высшие жирные кислоты, высшие жирные спирты. Для ТСХ анализа использовали систему петролейный эфир – этилацетат, 9:1.
Проведенное исследование, направленное на обнаружение полярных липидов показало их отсутствие в составе липидного остатка, что подтверждает гидролитическое расщепление фосфолипидов при щелочной обработке биомассы, в ходе которой выделяется бактериопурпурин, где в качестве образца сравнения использовали коммерческий лецитин, а детекцию проводили с помощью обработки хроматограммы, молибденовым синим [43].
Для количественного анализа других компонентов липидного остатка было проведено разделение компонентов смеси методом колоночной адсорбционной хроматографии на силикагеле. При использовании в качестве элюента бензола получили концентраты, обогащенные БАС различной природы.
Таблица 3.2
Процентный состав выделенных концентратов из липидного остатка биомассы Rh. Cap.
Состав концентратов | Содержание, % |
каротиноидные углеводороды | 3.9 |
токоферолы | 5 |
кислородосодержащие каротиноиды и высшие жирные кислоты (ВЖК) | 65.5 |
ВЖК | 5 |
ВЖК и фитол | 19.7 |
Далее проведенное при помощи ТСХ и ГЖХ фракционирование концентратов, позволило установить преобладающие ВЖК после предварительной их этерификации метиловым спиртом (табл. 3.3). На основании ГЖХ анализа можно сделать вывод, что липидный отход обогащен ВЖК, состав которых после переработки биомассы остался неизменным, а количество практически не уменьшилось. Следовательно, липидный отход является ценным источником БАС.
Выделение фракции, кислородосодержащих каротинойдов показало, что преимущественно преобладают в липидном остатке сфероидены. Общий, выход которого, от липидного остатка составил 14%.
Таблица 3.3
Данные ГЖХ анализа метиловых эфиров ВЖК липидного остатка биомассы Rhodobactercapsulatus.
№ пика | Обозначение ВЖК | Название ВЖК | Время удерживания мин | Содержание ВЖК, %* |
1 | Cl4:0 | миристиновая | 1.5 | 0.98 |
2 | С16:0 | пальмитиновая | 3.7 | 3.5 |
3 | Cl6:l | пальмитолеиновая | 5.2 | 3.9 |
4 | Cl8:0 | стеариновая | 6.8 | 2.2 |
5 | C18:l | олеиновая | 8.2 | 90.1 |
*-Среднее из трех измерений