Реферат: Монотонність функції необхідні і достатні умови Eкстремум функції однієї та декількох змінних

(6.87)

Означення. Точки, в яких частинні похідні першого порядку деякі функції дорівнюють нулю або не існують, називаються критичними точками.

Із доведеної теореми витікає, що екстремум функції кількох змінних може досягатись лише в критичних точках.

Для диференційованої функції двох змінних критичні точки знаходяться із системи рівнянь

(6.88)

Приклад.

Знайти критичні точки функції

Р о з в ’ я з о к. Прирівнюючи до нуля частинні похідні даної функції, одержуємо систему рівнянь для знаходження координат критичних точок:

Функція має чотири критичні точки:

.

Достатні умови існування екстремуму.

Теорема . Нехай є критична точка функції , яка в цій точці є неперервною, і нехай існує окіл точки , в якому має похідну , крім, можливо, точка . Тоді:

1) якщо в інтервалі похідна , а в інтервалі похідна , то є точкою максимуму функції ;

2) якщо в інтервалі , а в інтервалі то є точкою мінімуму функції ;

3) якщо в обох інтервалах і похідна має той самий знак ( набуває або тільки додатних, або тільки від’ємних значень), то не є екстремальною точкою функції .

Перше правило дослідження функції на екстремум. Щоб дослідити функцію на екстремум, треба:

1) знайти стаціонарні точки даної функції (для цього слід розв’язати рівняння , причому з його коренів вибрати тільки дійсні і ті, які є внутрішніми точками області існування функції).

2) знайти точки, в яких похідна не існує (функція в цих точках існує);

3) у кожній критичній точці перевірити зміну знака похідної першого порядку.

Приклади.

1. Дослідити на екстремум функцію .

Р о з в ’ я з о к. 1). Знаходимо

.

Розв’язуємо рівняння :

К-во Просмотров: 252
Бесплатно скачать Реферат: Монотонність функції необхідні і достатні умови Eкстремум функції однієї та декількох змінних