Реферат: Монотонність функції необхідні і достатні умови Eкстремум функції однієї та декількох змінних
(6.87)
Означення. Точки, в яких частинні похідні першого порядку деякі функції дорівнюють нулю або не існують, називаються критичними точками.
Із доведеної теореми витікає, що екстремум функції кількох змінних може досягатись лише в критичних точках.
Для диференційованої функції двох змінних критичні точки знаходяться із системи рівнянь
(6.88)
Приклад.
Знайти критичні точки функції
Р о з в ’ я з о к. Прирівнюючи до нуля частинні похідні даної функції, одержуємо систему рівнянь для знаходження координат критичних точок:
Функція має чотири критичні точки:
.
Достатні умови існування екстремуму.
Теорема . Нехай є критична точка функції , яка в цій точці є неперервною, і нехай існує окіл точки , в якому має похідну , крім, можливо, точка . Тоді:
1) якщо в інтервалі похідна , а в інтервалі похідна , то є точкою максимуму функції ;
2) якщо в інтервалі , а в інтервалі то є точкою мінімуму функції ;
3) якщо в обох інтервалах і похідна має той самий знак ( набуває або тільки додатних, або тільки від’ємних значень), то не є екстремальною точкою функції .
Перше правило дослідження функції на екстремум. Щоб дослідити функцію на екстремум, треба:
1) знайти стаціонарні точки даної функції (для цього слід розв’язати рівняння , причому з його коренів вибрати тільки дійсні і ті, які є внутрішніми точками області існування функції).
2) знайти точки, в яких похідна не існує (функція в цих точках існує);
3) у кожній критичній точці перевірити зміну знака похідної першого порядку.
Приклади.
1. Дослідити на екстремум функцію .
Р о з в ’ я з о к. 1). Знаходимо
.
Розв’язуємо рівняння :