Реферат: Неперервність функції в точці і в області Дії над неперервними функціями Формулювання основних

Приклади.

1. Початок координат є точкою розриву функції

.

Справді, областю існування є вся площина , крім точки . Точка є точкою згущення цієї області, але не є точкою неперервності , оскільки не має числового значення в точці ; крім того, функція не має границі при (довести).

2. Функція задана формулою

.

Областю існування є вся площина , крім параболи . Всі точки цієї параболи є точками розриву , оскільки кожна з них є точкою згущення , але не належить , тому не має числового значення в кожній такій точці; крім того, має нескінченну границю при прямуванні точки до будь-якої точки цієї параболи. Тому парабола є лінія розриву функції .

Зупинимось на функції , яка визначена на відрізку . В точках і можна ставити питання про односторонню неперервність, а саме, в точці можна ставити питання про неперервність справа, а в точці - зліва. Тому природно постає питання про введення таких понять, як неперервність функції зліва і справа.

Означення. Функція називається неперервною в точці зліва (справа), якщо виконуються умови:

1) визначена в точці (існує число );

2) в точці існує лівостороння (правостороння) границя функції;

3) лівостороння (правостороння) границя функції дорівнює значенню функції в точці , або

,

.

Очевидно, коли функція неперервна в точці, то вона в цій точці є неперервна і зліва, і справа. Має місце така теорема.

Теорема. Для того, щоб функція була неперервна в даній точці, необхідно і достатньо, щоб вона була в цій точці неперервна справа і зліва.

Нехай функція визначена в усіх точках деякого проміжку , крім, можливо, внутрішньої точки .

Означення. Якщо функція в точці не є неперервною, то точка називається точкою розриву функції , а саме функція при цьому називається розривною в точці .

Отже, за означенням, будь-яка внутрішня точка проміжку , де визначена функція , є точкою розриву функції, якщо в цій точці порушується хоча б одна з трьох умов неперервності. Тому залежно від того, яка з цих умов не виконується, точки розриву поділяють на два роди.

Означення. Точка розриву функції називається точкою розриву першого роду , якщо в цій точці існують скінченні лівостороння і правостороння границі.

Якщо границі рівні між собою, то точка називається точкою усувного розриву .

Якщо границі скінченні, але не рівні, то точка називається точкою розриву типу “ стрибка “.

Означення. Точка розриву функції називається точкою розриву другого роду, якщо в цій точці не існує хоча б одна з односторонніх границь або дорівнює безмежності.

Приклади.

1. .

Функція визначена на всій числовій осі, за винятком точки . Знайдемо лівосторонню і правосторонню границі в цій точці:

Отже, одна функція в точці має розрив першого роду.

К-во Просмотров: 248
Бесплатно скачать Реферат: Неперервність функції в точці і в області Дії над неперервними функціями Формулювання основних