Реферат: Нерівноважні поверхневі структури реакційно-дифузійних систем типу активатор-інгібітор
– встановити умови виникнення біфуркацій Хопфа та Тюрінга;
– дослідити властивості одновимірних та двовимірних просторово-часових структур, зумовлених нестійкостями Хопфа та Тюрінга.
· для модельної електрокаталітичної реакції на поверхні сферичного мікроелектрода встановити умови виникнення біфуркації Хопфа в залежності від його розмірів та товщини дифузійного шару Нернста.
Об’єкт дослідження : процеси самоорганізації, які відбуваються у реакційно-дифузійних системах, що знаходяться у стані, далекому від термодинамічної рівноваги.
Предмет дослідження : просторово-часові структури реакційно-дифузійних систем типу активатор-інгібітор.
Методи дослідження . Розглянуті у роботі системи диференційних рівнянь у частинних похідних в загальному випадку не можуть бути розв’язані аналітично. Аналіз можливих типів біфуркацій - нестійкостей у часі і просторі розглядуваних систем, звичайно проводиться на основі методів лінійної теорії стійкості, теорії біфуркаційного аналізу та чисельного моделювання. Ефективним при дослідженні динамічних нестійкостей електрохімічних систем є метод імпедансної спектроскопії. Він дозволяє ідентифікувати біфуркації електрохімічних систем на основі аналізу їх імпедансних діаграм, зокрема виявити біфуркацію Хопфа, що важко зробити іншими методами у електрохімічних системах.
Наукова новизна одержаних результатів
1. Вперше для повної версії реакційно-дифузійної моделі ФітцХ’ю-Нагумо розраховано значення параметра зовнішньої постійної сили, при яких у системі можлива реалізація біфуркацій Хопфа та Тюрінга.
2. Вперше досліджено властивості поверхневих просторово-часових структур, що виникають у моделі ФітцХ’ю-Нагумо в її моно- та бістабільному режимах у результаті спільної дії біфуркацій Хопфа та Тюрінга.
3. На основі біфуркаційної теореми Хопфа знайдено залежність періоду стійких автоколивань динамічних змінних системі ФХН від постійної зовнішньої стимуляції. На основі одержаних аналітичних результатів та за допомогою чисельного моделювання встановлено особливості відгуку точкової системи ФХН на періодичну стимуляцію.
4. Вперше для редукованої одновимірної моделі ФХН показано існування у певному діапазоні значень зовнішньої постійної сили точного розв’язку у вигляді біжучої хвилі (кінку), що розповсюджується із певною постійною швидкістю, яка крім параметра зовнішньої сили залежить від коефіцієнта дифузії активатора та рівня збудження системи.
5. Вперше для модельної електрохімічної системи з електрокаталітичною реакцією на сферичному мікроелектроді для потенціостатичних умов встановлено кількісне співвідношення між розмірами сферичного електрода, фарадеєвським імпедансом і нестійкостями Хопфа.
Наукове та практичне значення одержаних результатів
Одержані результати дозволяють узагальнити уявлення про механізми виникнення нестійкостей у нерівноважних системах різної природи і можуть бути використані при дослідженні:
• відгуку збудливих та бістабільних систем, зокрема біологічних мембран, на зовнішню стимуляцію (малі частинки біологічно активних речовин, зовнішні електромагнітні поля, струми);
• спонтанних коливань струму / потенціалу електроду (Fe, Ni, Cu, Pt електроди) при електрохімічних поверхневих реакціях, а саме при аналізі імпедансних діаграм;
• каталітичних поверхневих реакцій на малих частинках.
Особистий внесок здобувача
Основу дисертаційної роботи склали результати аналітичних та чисельних розрахунків, виконаних здобувачем особисто. Формулювання задач та вибір об’єктів дослідження, обговорення одержаних результатів здійснювалося разом із науковим керівником професором, доктором фізико - математичних наук Гречком Л.Г. Підбір, огляд та аналіз літературних даних проведено особисто здобувачем. Обговорення всіх результатів та формулювання висновків проведено разом із науковим керівником та співавторами опублікованих за темою дисертації праць. З кандидатом технічних наук Лерманом Л.Б. (Інститут хімії поверхні ім. О.О. Чуйка НАН України) велося обговорення результатів підрозділу 3.2.2 з точки зору використаних обчислювальних алгоритмів, а з асистентом Склярівим Ю.П. (Київський національний медичний університет ім. О.О. Богомольця) обговорювалися медичні аспекти отриманих результатів. З доктором фізико-математичних наук Левчуком Ю.М. (Інститут біохімії ім. О.В. Палладіна НАН України) обговорювалися результати розділу 3.4 щодо їх відповідності до експерименту. З академіком НАН України Булавіним Л.А. (Київський Національний Університет імені Тараса Шевченка) обговорювалися результати, що увійшли у розділи 3.5 та 3.8 дисертації. Теоретичні результати, викладені у розділах 4.1 та 4.2, отримані разом з кандидатом хімічних наук Потоцькою В.В. (Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАНУкраїни), а чисельні – здобувачем особисто. Обговорення отриманих результатів велося з академіком НАН України Волковим С.В. та доктором хімічних наук Омельчуком А.А. (Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАНУкраїни).
Апробація результатів роботи
Матеріали дисертаційної роботи доповідались на: ІІІ з’їзді українського біофізичного товариства (Львів, жовтень 2002); ХІ Міжнародній науковій конференції ім. академіка М. Кравчука (Київ, травень 2006) та щорічних наукових конференціях Інституту хімії поверхні ім. О.О. Чуйка НАН України (Київ, травень 2006, травень 2007). Вони також були оприлюднені на міжнародних конференціях: Тhe 5th International Conference on Biological Physics ICBP (Gothenburg, Sweden, August, 23-27, 2004); Втором Евразийском конгрессе по медицинской физике и инженерии „Медицинская физика 2005”, (Москва, Россия, июнь 2005).
Публікації
Основні результати дисертації опубліковано у 6 статтях у вітчизняних тазарубіжних фахових виданнях, 6 тезах доповідей на вітчизняних та міжнародних конференціях.
Структура дисертаційної роботи. Дисертація складається зі вступу, чотирьох розділів, висновків, списку використаних літературних джерел із 222 найменувань, містить 59 рисунків та дві таблиці. Повний обсяг дисертації становить 166 сторінок машинописного тексту.
ОСНОВНИЙ ЗМІСТ РОБОТИ
У вступі обґрунтовано актуальність теми дисертації, сформульовано мету і задачі досліджень, обговорено наукову новизну і практичне значення одержаних здобувачем результатів, показано зв’язок дисертаційної роботи з науковими програмами Інституту хімії поверхні ім.О.О. Чуйка НАН України.
У першому розділі розглянуто сучасний стан експериментального та теоретичного дослідження процесів самоорганізації у реакційно-дифузійних системах та проаналізовано механізми виникнення у них просторово-часових структур.
У другому розділі розглянуто елементи лінійної теорії стійкості та теорії біфуркацій, а також особливості методу імпедансної спектроскопії як методу дослідження лінійної стійкості електрохімічних систем.
У третьому розділі розглянута поведінка канонічної моделі типу активатор-інгібітор - моделі ФітцХ’ю-Нагумо у її повній версії під дією постійної та періодичної стимуляції для нульвимірного, одновимірного та двовимірного випадків. Модель ФХН описує просторово-часову поведінку двох динамічних змінних - активатора та інгібітора :
, , (1)