Реферат: О некоторых применениях алгебры матриц

- столбец свободных членов системы (1)

Так как , то матрица невырожденная и для нее существует обратная матрица . Умножив равенство (3) на (слева), получим (единственное) решение системы в следующей матричной форме (в предположении, что она совместима и - ее решение)

,

где обратная матрица имеет вид:

(-алгебраическое дополнение элемента в определителе )

Другой известный способ можно назвать методом алгебраических дополнений . Его использование предполагает владение понятием алгебраического дополнения как и в матричном способе, теоремой о разложении определителя по столбцу (строке), теоремами о замещении и об аннулировании.

Предлагаемый нами новый метод опирается на теорему Коши-Бине об определителе произведения матриц.

Суть этого метода можно понять легко, если сначала рассмотрим случай . Очевидно, что при выполняются следующие матричные равенства (если задана система (1)):

Переходя к определителям в этих равенствах и обозначив определители правых частей соответственно через получим формулы Крамера:

()

(Правило Крамера)

Переход к общему случаю Крамеровых систем (1) порядка ничего по существу не меняет. Просто следует заметить, что матрица с определителем получается из единичной матрицы заменой -го столбца столбцом неизвестных:

(5)

Теперь из равенств

,

где - матрица, получающаяся заменой - го столбца матрицы столбцом свободных членов системы (1), причем к формулам Крамера, взяв определители от обеих частей в каждом равенстве:

, откуда ввиду имеем

.

(здесь получается из , как и из ).

Другой, еще более короткий способ отыскания решения системы (1) состоит в следующем (по-прежнему ): пусть система (1) совместна и числа (после переобозначений) образуют ее решение. Тогда при имеем, используя два линейных свойства определителя:

Можно начать и с определителя , в котором вместо свободных членов в -м столбце подставлены их выражения согласно (1); используя соответствующие свойства определителя, получим:

(),

откуда и получаются формулы Крамера.

Замечание. Проверка того, что значения неизвестных, определяемые по формуле Крамера удовлетворяют системе (1), (т.е. образуют решение системы), производится одним из известных способов.

§2. Применение циркулянтов малых порядков в теории чисел .

Матрица вида:

К-во Просмотров: 273
Бесплатно скачать Реферат: О некоторых применениях алгебры матриц