Реферат: О некоторых применениях алгебры матриц
не имеет решений в натуральных числах .
Предложение 2 . Уравнение
разрешимо в натуральных числах .
Доказательство : удовлетворяют нашему уравнению. Если не все три числа между собой равны, то как мы видели в ходе доказательства Предложения (1), выполняется неравенство
- противоречие. Таким образом, должно быть , и из нашего уравнения следует, что каждое из этих чисел равно 1, так что .
Поэтому получаем
.
Итак, мы доказали, что заданное уравнение имеет бесконечно много решений в натуральных числах .
Предложение 3 . Произведение двух чисел, каждое из которых является суммой двух квадратов, представимо в виде суммы двух квадратов.
Доказательство : Рассмотрим следующее произведение двух циклических матриц (второго порядка)
где - мнимая единица. Переходя к определителям, получим равенство
. (5)
Предложение 4 . Если число представляемое в виде суммы двух квадратов, делится на простое число, являющееся суммой двух квадратов, то частное также является суммой двух квадратов.
Доказательство : Пусть число делится на простое число вида :
.
Требуется доказать, что частное имеет вид .
Предположим, что задача уже решена, т.е.
, (6)
и с помощью анализа попробуем найти искомые числа и . Гипотетическое равенство (6) подсказывает целесообразность рассмотрения матричных равенств.
и
перемножив правые части этих равенств, получим:
отсюда имеем:
(7)
(8)
. (9)
Так как - простое число и делит , то равенство (9) показывает, что или делится на .