Реферат: Об алгебраических уравнениях высших степеней
ОБ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЯХ ВЫСШИХ СТЕПЕНЕЙ
Белокопытов А.Ю., Морозов В.О.
группа 20-КТ-61
Краснодар, 2001
Уравнения! Можно утверждать наверняка, что не найдется ни одного человека, который бы не был знаком с ними. Дети сызмала начинают решать «задачи с иксом». Дальше – больше. Правда, для многих знакомство с уравнениями и заканчивается школьными делами. Известный немецкий математик Курант писал: «На протяжении двух с лишним тысячелетий обладание некоторыми, не слишком поверхностными, знаниями в области математики входило необходимой составной частью в интеллектуальный инвентарь каждого образованного человека». И среди этих знаний было умение решать уравнения.
Уже в древности люди осознали, как важно научиться решать алгебраические уравнения вида
a0 xn + a1 xn – 1 + … + an = 0
– ведь к ним сводятся очень многие и очень разнообразные вопросы практики и естествознания (конечно, здесь можно сразу предполагать, что а0 ¹ 0 , так как иначе степень уравнения на самом деле не n , а меньше). Многим, разумеется, приходила в голову заманчивая мысль найти для любой степени n формулы, которые выражали бы корни уравнения через его коэффициенты, т.е., решали бы уравнение в радикалах. Однако «мрачное средневековье» оказалось как нельзя более мрачным и в отношении обсуждаемой задачи – в течение целых семи столетий требуемых формул никто не нашел! Только в XVI веке итальянским математикам удалось продвинуться дальше – найти формулы для n = 3 и 4 . История их открытий и даже авторство найденных формул достаточно темны по сей день, и мы не будем здесь выяснять сложные отношения между Ферро, Кардано, Тартальей и Феррари, а изложим лучше математическую суть дела.
Рассмотрим сначала уравнение
a0 x3 + a1 x2 + a2 x + a3 = 0.
Легко проверить, что если мы положим , где y – новое неизвестное, то дело сведется к решению уравнения
y 3 + py + q = 0,
где p, q – новые коэффициенты. Счастливая догадка итальянцев состояла в том, чтобы искать y в виде суммы y = u + v , где u , v – д в а новых неизвестных. Для них наше уравнение перепишется – после небольшой перегруппировки слагаемых – так:
u 3 + v 3 + (3 uv + p )( u + v ) + q = 0.
Так как неизвестных теперь два, на них можно наложить еще какое-нибудь условие – лучше всего
3 uv + p = 0,
тогда исходное уравнение примет совсем простой вид
u 3 + v 3 + q = 0.
Это означает, что сумма кубов u 3 , v 3 должна равняться – q , а их произведение . Следовательно, сами u 3 , v 3 должны быть конями квадратного уравнения
t 2 + qt – p3 /27 = 0,
а для него формула уже известна. В итоге получается формула
причем из девяти пар значений входящих в нее кубических радикалов надо брать только пары, дающие в произведении –p/3, как вытекает из нашего рассуждения. Исторически за этой формулой закрепилось название формулы Кардано, хотя вопрос о ее авторстве так до конца и не выяснен.
Для n = 4 формулу открыл Феррари, она выглядит сложнее, но тоже использует только четыре арифметических действия и извлечение радикалов. Вот набросок вывода формулы Феррари. Прежде всего, подобно предыдущему, положим , тогда дело сведется к решению уравнения вида
y 4 + py 2 + qy + r = 0.
Дополнив y 4 до ( y 2 + z )2 , т.е. прибавив и вычтя в левой части 2 zy 2 + z 2 , где z – вспомогательное неизвестное, получим
( y 2 + z )2 – [(2 z – p ) y 2 – qy + ( z 2 – r )] = 0.
Подберем теперь z так, чтобы квадратный трехчлен в квадратных скобках оказался полным квадратом; для этого нужно, чтобы его дискриминант равнялся нулю, т.е. чтобы было
q2 – 4(2z – p) (z2 – r) = 0.
Можем ли мы решить это уравнение относительно z ? Да, можем, так как оно кубическое. Пусть z 0 – какой-нибудь его корень (даваемый формулой Кардано) тогда исходное уравнение перепишется в виде
[(y2 + z0 ) – (…)] * [(y2 + z0 ) + (…)] = 0,
где многоточия означают многочлен не более чем первой степени от y , оба раза один и тот же.
;
;
При этом знаки перед радикалами выбирают так, чтобы выполнялось равенство .
В 1770-71 гг. знаменитый французский математик Лагранж (1736-1819) публикует в Мемуарах Берлинской Академии свой мемуар «Мысли над решением алгебраических уравнений», в котором делает критический пересмотр всех решений уравнений 3-й и 4-й степеней, данных его предшественниками, и замечает, что все они в сущности основаны на следующем принципе. Пусть x 1 , x 2, …, xn будут корни заданного уравнения, и пусть j ( x 1 , x 2, …, xn ) будет их рациональная функция, принимающая при всевозможных n ! перестановках между корнями v значений. Тогда эта функция удовлетворяет уравнению степени v с рациональными коэффициентами. Согласно точке зрения Лагранжа, задача заключается в том, чтобы подобрать функцию j ( x 1 , x 2, …, xn ) таким образом, чтобы v было меньше n . И вот оказалось, что при п >4 невозможно.
Эти исследования Лагранжа дали для последующих алгебраистов весьма удобный аппарат. Кроме того, они указали путь, по которому следовало искать доказательства невозможности общего решения уравнений в радикалах.
Дальнейшим этапом в выяснении проблемы решения уравнений в радикалах послужили работы Руффини (P. Ruffini, 1765-1822) и Абеля (N.-H. Abel, 1802 - 1829). Руффини (1799) предложил доказательство неразрешимости в радикалах уравнений 5-й степени, коэффициенты которого являются независимыми переменными. Однако его доказательство окончилось неудачей.
Нужен был принципиально новый подход. На этот раз он не заставил себя долго ждать – уже в 1824 году молодой (и в возрасте 27 лет умерший) норвежский математик Нильс Генрик Абель, опираясь на идеи Лагранжа, связанные с перестановками корней уравнения, доказал, что требуемых формул, которые решали бы в радикалах уравнение общего вида, при n ³5 действительно не существует. Теорема Абеля дала отрицательный ответ только для уравнений общего вида, т.е. с буквенными коэффициентами a 0 , a 1 , …, an , но, разумеется, многие конкретные уравнения сколь угодно высокой степени вполне могут решаться в радикалах (пример: уравнение x 90 + 5 x 45 + 7 = 0). Поэтому сразу же встал вопрос о полном решении задачи – нахождении критерия разрешимости уравнений в радикалах, т.е. необходимого и достаточного условия, которое по коэффициентам a 0 , a 1 , …, an любого заданного уравнения позволяло бы судить, решается уравнение в радикалах или нет.
Вопрос о разрешимости уравнений в радикалах был окончательно разобран, во всяком случае принципиально, в работах Галуа (EvaristeGalois, 1811-1832). Личность Галуа представляет собой совершенно исключительное в истории науки явление. Жизнь Галуа, умершего всего на 21 году, протекала крайне бурно. Дважды провалившись на вступительных экзаменах в знаменитую Политехническую школу, Галуа поступил в Подготовительную школу (преобразованную из Высшей нормальной школы во время реакционного правления Карла IX), откуда вскоре после июльского переворота был уволен за печатное выступление против школы. После этого Галуа открыл «публичный курс» по алгебре, но политическая жизнь страны быстро вовлекла его в свой водоворот. Имея репутацию ярого республиканца и активного врага Луи-Филиппа, он два раза сидел в тюрьме за политические выступления и в мае 1832 года был убит на дуэли, причины которой остаются до сих пор загадочными.
За свою короткую жизнь Галуа успел создать теорию, которая до сих пор стоит в фокусе математической мысли. Рассматривая численные уравнения, он установил понятие их группы , т.е. совокупности таких подстановок между их корнями, которые не нарушают рациональных соотношений между ними. Эта группа определяет для каждого уравнения алгебраическую структура его корней. В частности, уравнение разрешимо в радикалах тогда и только тогда, если его группа принадлежит к числу так называемых разрешимых групп . Таким образом вопрос о разрешимости каждого данного уравнения в радикалах может быть решен при помощи конечного числа действий.
Обратимся теперь к исходному объекту исследования – уравнению
a0 xn + a1 xn – 1 + … + an = 0,
где a 0 , a 1 , …, an - заданные числа. Еще Гаусс в конце XVIII века доказал «основную теорему алгебры», гласящую, что при любых a 0 , a 1 , …, an данное уравнение имеет в поле комплексных чисел п корней, точнее, стоящий в его левой части многочлен f( x) может быть разложен на линейные множители
f(x) = a0 (x - a 1 )…(x - a n ),
где a 1 … a n – некоторые комплексные числа (называемые корнями уравнения). Задача состоит в том, чтобы узнать, существуют ли формулы, выражающие корни a 1 , …, a n через коэффициенты a 0 , a 1 , …, an с помощью четырех арифметических действий и извлечения радикалов? Прежде всего, сразу можно считать, что все числа a 1 , …, a n различны, иначе мы поделили бы многочлен f на наибольший общий делитель этого f и его производной f’ , что дало бы нам новый многочлен с теми же самыми корнями, но уже без повторений.
Ключевой идеей, поистине прозрением Галуа, явилась мысль связать с каждым алгебраическим уравнением группу всех автоморфизмов его «поля корней» Q (a 1 , …, a n ), которые оставляют неподвижным «поле коэффициентов» Q( a 0 , a 1 , …, an ). Понятно, что это действительно группа, так как если j, y - два таких автоморфизма, то автоморфизмы jy и j-1 тоже оставляют числа a 0 , a 1 , …, an неподвижными.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--