Реферат: Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения

U(x,y)=

Следовательно из (7)

теперь нетрудно убедиться, что функция Z(X,Y) не достигает максимума на линии У=1. Из условий

следует, что Z(X,Y) не достигает максимума (минимума) и на отрезках OB и OA.

Функция Z(Х,Y) не достигает максимума (минимум) и на отрезке АЕ. Действительно, если Z(X,Y) достигает максимума (минимума) на АЕ, то из условия Z(X,Y)=φ(Y)-W(Y)

Следует, что этот максимум (минимум) должен реализоваться и внутри области, что противоречит известным свойствам решений элиптических уравнений.

Итак Z(X,Y) ≡ 0 в области Д, W(Y) ≡ 0 при 0≤Y≤1. U ≡ 0 и в области Д (Задача Коши).

Таким образом U(X,Y)≡0 в области Д.

Теперь переходим к доказательству существования решения изучаемой задачи.

Реализуя условие (3) имеем:

φ(x)+ψ(x)-

тогда из (11) получим

φ(Х+У)+ψ(Х+Y)-(1)+ (X-Y) (18)

используя условие (4) после простых преобразований приходим к функциональному уравнению.

Φ(х)-L(x)φ(βx)=δx (19)

Где δ(x)=

Единственное решение функционального уравнения (19) можно найти применением метода итерации.

Таким образом неизвестная функция φ(х) определена единственным образом. Из (18) найдём

U(X,0)+U(X,0)=(X) (20)

Где известная функция

регулярное в области Д решение уравнения (8) удовлетворяющее краевым

условиям

задается формулой [2]:

Отсюда находим (X,0):

К-во Просмотров: 180
Бесплатно скачать Реферат: Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения