Реферат: Об ориентационном взаимодействии спиновых систем

ΔEk = Ek – Ek0 = Lk 2 (cos2 φ + Ix /Iy – 1)/2Ix = Lk 2 (Ix /Iy – sin2 φ)/2Ix . (9)

Согласно (8), при sinφ<(Ix /Iy )0,5 кинетическая энергия прецессирующего волчка Ek превышает таковую в отсутствие прецессии (при φ=0). Это означает, что для возбуждения прецессионного движения необходимо затратить определенную работу. В условиях замкнутой системы с неизменным суммарным моментом количества движения L0 =ΣLk0 это может быть вызвано только превращением в кинетическую потенциальной энергии взаимной ориентации тел U=U(φ). Вычислить эту работу и тем самым найти изменение ориентационной энергии можно из следующих соображений.

Известно, что прецессия волчка или гироскопа (т.е. дополнительное вращение их вокруг оси, не совпадающей с осью собственного вращения) возникает, когда к ним приложен определенный крутящий момент Mk =dLk /dt. Работа dWk =–Mk ·dφ, которая затрачивается на отклонение оси гироскопа от его первоначального положения (при φ=0) в условиях Ωk =const и Lk0 =Ix Ωk =const, равна, очевидно, дополнительной кинетической энергии dEk пk dLk , которую приобретает гироскоп в результате прецессии. При этом величина угловой скорости прецессии ωk =|ωk | определяется известным соотношением [4]:

ωk =Mk /Ix Ωk ·sinφ. (9)

Подставляя (9) в выражение dEk п и приравнивая последнее величине dWk , получим:

dLk = Lk0 sinφ·dφ, (10)

Интегрируя это выражение в пределах от φ=0 до φ в условиях постоянства Lk , имеем:

(11)

Поскольку при φ=0 прецессия отсутствует, C=1, так что окончательно получаем:

Lk = Lk0 (1 – cosφ). (12)

Согласно этому выражению, по мере увеличения угла φ под действием крутящего момента Mk момент количества прецессионного движения Lk также возрастает. Следовательно, с возникновением прецессии у вращающихся тел появляется дополнительная кинетическая энергия внутреннего вращения Eω. Таким образом, кинетическая энергия прецессионного движения Ek (φ) может служить мерой «разориентации» системы вращающихся тел. В этом порядке идей совершенно естественным выглядит тот факт, что прецессия прекращается с исчезновением крутящих моментов Mk . Это соответствует наступлению ориентационного равновесия в системе взаимодействующих тел, т.е. состояния, характеризующегося одинаковой ориентацией осей вращения тел или частиц. При «раскрутке» гироскопов направление Lk у них не изменяется, т.е. ориентационное равновесие не нарушается. Потому-то уравновешенные гироскопы и не изменяют в дальнейшем своей ориентации. Напротив, возникновение прецессии вращающихся тел свидетельствует об отсутствии в системе ориентационного равновесия и о наличии в ней поля крутящих моментов Mk . Источником возмущения при этом может служить, например, относительное движение тел, а в микромире – тепловое движение частиц. Это и объясняет, почему в упомянутых выше экспериментах для достижения спин-спинового равновесия требовались достаточно низкие температуры.

Обсуждение результатов

Зависимость всех упорядоченных форм энергии от взаимной ориентации тел с несферической симметрией свидетельствует о существовании в природе специфического ориентационного взаимодействия и соответствующего ему ориентационного равновесия. Специфика этого взаимодействия (независимо от его физической природы) состоит в стремлении к установлению единой ориентации осей симметрии тел (а для вращающихся тел – единой ориентации осей их вращения), соответствующей минимальному значению поля крутящих моментов (ориентационного поля) M(r,φ). Это поле не следует смешивать с гипотетическим торсионным полем (полем кручения), порожденным различной плотностью угловых скоростей Ωk или моментов вращения (спинов) тел и частиц Lk [6]. В отличие от последнего, поле M(r,φ) является составляющей известных силовых полей, т.е. присуще и неподвижным телам. Далее, оно существует и в системе тел (частиц), вращающихся с одинаковой угловой скоростью Ωk . Кроме того, оно направлено по нормали к Ωk и вызывает не ускорение, а переориентацию вектора их угловой скорости, т.е. изменяет ωk , а не Ωk . При этом наглядным проявлением отсутствия ориентационного равновесия является возникновение в спиновых микро- и макросистемах прецессионного движения.

Дальнодействие полей M(r,φ) определяется их конкретной физической природой и в принципе ограничено. Однако это ограничение не относится к волнам, возникающим при осцилляции этих полей. В частности, при осцилляции электромагнитных полей возникают электромагнитные волны, а при нарушении спинового порядка – так называемые спиновые волны, также обнаруженные экспериментально у целого ряда веществ [4]. Сфера распространения волн определяется, как известно, исключительно свойствами проводящей их среды, и для сред типа физического вакуума (с пренебрежимо малой диссипацией ориентационной энергии) может быть практически неограниченной. Поэтому ввиду направленного характера и возможности накопления ориентационного воздействия (в отличие от хаотических возмущений) оно может оказаться достаточным для упорядочивания не только микро, но и макросистем.

Наличие ориентационных полей и взаимодействий объясняет целый ряд явлений, начиная от выстраивания в одной плоскости колец Сатурна до явления спонтанного намагничивания ферромагнетиков. Однако более важным представляется вывод о существовании в Природе наряду с тенденцией к превращению упорядоченных форм энергии в тепловую противоположной тенденции к установлению порядка, обусловленной наличием полей M(r,φ) и ориентационных взаимодействий. Это положение не следовало из классической, статистической и неравновесной термодинамики [7] и является существенным дополнением к ним. Его учет проливает новый свет на процессы «самоорганизации» объектов живой и неживой природы, на противоположные диссипативным процессы в ряде областей Вселенной и другие явления, казавшиеся странными с позиций современного естествознания.

Список литературы

ЭткинВ.А. О специфике спин-спинового взаимодействия. НиТ, 2002.

RamseyN.F. Thermodynamics and Statistical mechanics by Negative Absolute Temperature. // Phys. Rev. – 1956. – V.103. – №1. – р.279.

АбрагамА., ПрокторУ. Спиновая температура. // Проблемы современной физики. – М., 1959. – Вып.1. (A.Abragam, W.Proctor. Spin Temperature. // Phys. Rev., 109, 1441...1458 (1958)).

Физический энциклопедический словарь. – М.: Советская энциклопедия, 1984.

ЛандауЛ.Д, ЛившицЕ.М. Теоретическая физика, Т.1 (Механика). М.:Наука, 1973

АкимовА.Е. Эвристическое обсуждение проблемы поиска новых дальнодействий. EGS-концепции. – М., МНЕЦВЕНТ 1992. Препринт №7А, 63с.

ЭткинВ.А. Термокинетика (термодинамика неравновесных процессов переноса и преобразо вания энергии). Издание 2-е. – Тольятти, 1999, 228с.

К-во Просмотров: 334
Бесплатно скачать Реферат: Об ориентационном взаимодействии спиновых систем