Реферат: Обратные задачи гравиметрии
Используя полученные в предыдущих параграфах уравнения, рассмотрим обратные задачи гравиметрии, т.е. найдем выражения для определения параметров и глубины залегания гравитирующих масс, сосредоточенных в телах простой геометрической формы.
Определение параметров и глубины залегания вертикального стержня. Изометрические аномалии (см. рис. 28, с. 126) можно аппроксимировать полем вертикального стержня или кругового цилиндра бесконечного простирания. Притяжение вертикального стержня с линейной массой l, рассредоточенной по всей его длине, определяется выражением:
. (V.35)
При x = 0 найдем максимальное значение Dgmax
.
Определим координату , в которой Dg равно половине
Dgmax :
.
Откуда
или
. (V.36)
Глубина залегания верхней кромки h1 и масса тела l могут быть найдены из следующих простых выражений:
; . (V.37)
Определение параметров залегания шара. Изометрические аномалии одного знака, замыкающие несколько большую площадь по сравнению с аномалиями от стержня (см. рис. 27, с. 126). можно аппроксимировать полем шара:
. (V.38)
При x = 0
.
Найдем абсциссу , где :
,
откуда
(V.39)
Масса шара определяется из выражения:
. (V.40)
Если известна избыточная плотность , можно определить массу и радиус шара а.
, . (V.41)
Определение элементов залегания горизонтальной полуплоскости. Поле Dg, характерное для уступа, показано на рис. 29. Притяжение уступа определяется выражением:
, (V.42)
где r – поверхностная плотность.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--