Реферат: Общая гидродинамика 2
Из (9) следуют равенства
или в сокращенной записи, .
С симметричным тензором второго ранга связана симметрическая квадратичная форма
(10)
В этой записи предполагается, что по повторяющимся индексам производится суммирование. Как известно, существует главная система координат , в которой квадратичная форма (10) имеет простейший вид
Тензор напряжений в этой системе содержит только диагональные члены
Приведение квадратичной формы (10), записанной в произвольной ортогональной декартовой системе координат, к главным осям () осуществляется невырожденным линейным преобразованием. Величины называются главными напряжениями, они находятся как корни уравнения
Вещественность корней следует из симметричности тензора. Это уравнение эквивалентно следующему:
(11)
Отсюда следует, что величины не изменяются при замене осей координат. Таким образом, получаем три инварианта тензора напряжений: линейный , квадратичный , кубический . Их можно выразить через коэффициенты или через корни уравнения (11):
(12)
Тензор скоростей деформаций. Выберем малую частицу жидкости и точку , принадлежащую этой частице. Для любой точки , бесконечно близкой к , можно записать разложение Тейлора в линейном приближении
(13)
Здесь - координаты точки относительно точки , так что
Введем в рассмотрение матрицу из девяти элементов
Тогда (13) можно переписать следующим образом:
Полученное равенство не зависит от системы координат и в любой системе координат вектору ставит в соответствие вектор . Это свойство равенства является необходимым и достаточным условием того, что входящая в него матрица определяет тензор.
Преобразуем разложение (13) так, чтобы привести его к виду
(14)
В силу линейности (13) по функция должна быть квадратичной относительно переменных, и ее можно записать следующим образом:
Спроектируем (14) на оси координат: